首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of liquid maldistribution at the top of the packing on flow characteristics in packed beds of gas and liquid cocurrent downflow (trickle beds) is experimentally investigated. Particular attention is paid to the effect of gas and liquid flow rates on flow development. Tests are made in the trickling and pulsing flow regimes. A uniform, a half-blocked and a quarter-blocked liquid distributor is tested. Packings of various sizes and shapes are employed. Data are presented on pressure drop and liquid holdup as well as trickling to pulsing flow transition. Diagnosis of radial and axial liquid distribution is made by means of conductance probes. The effects of liquid foaming, bed pre-wetting, top-bed material, and blockage midway the bed on liquid distribution are also examined. Overall, liquid waves in the pulsing flow regime have a beneficial effect, promoting uniform liquid distribution in the bed cross section.  相似文献   

2.
Mass transfer coefficients have been measured for the vaporization of mercury flowing countercurrent to air in irrigated packed beds of spheres and Raschig rings. The measured coefficients increased with gas and liquid flow rates, and were correlated in terms of gas Reynolds number and liquid rate. The mass transfer data for liquid metal irrigation were lower than published data for wetting aqueous systems, due to the non-wetting nature of liquid metals. The lower mass transfer coefficients are believed to be attributed to a lower interfacial area for the non-wetting flow of liquid metals, although direct experimental proof was not obtained. The present results are in agreement with data for zinc absorption in molten lead in packed bed (Warner, 1959) when correlated in terms of the relative velocity and total liquid holdup. The results suggest that for liquid metal irrigated beds, the total hold-up is effective in gas phase transfer processes.  相似文献   

3.
The effects of a poorly packed bed on the pressure vacuum swing adsorption (PVSA) process were investigated experimentally and theoretically by a five-step two-bed PVSA system. At first, the adsorption dynamics of a zeolite LiX bed for air separation (78 mol% N2, 21 mol% O2 and 1 mol% Ar) was studied at various adsorption pressures and flow rates. In breakthrough results, the effect of adsorption pressure on variations in bed temperature was greater than that of the feed flow rate. A combined roll-up of Ar and O2 by N2 propagation was observed and the roll-up plateau reached about 4 mol%. The fluid dynamic behavior of the poorly packed bed was simulated at each step in the PVSA process. The pressure and velocity profiles in the non-isobaric steps were clearly different from those of a normally packed bed. The two-bed PVSA process using one poorly packed bed with additional 1% void volume in feed end of bed could produce a purity of 92.3mol% O2 from air, which was almost 1% purity lower than the PVSA with normal two beds. Even small asymmetry between beds, due to poor bed packing, could greatly reduce the product purity in the PVSA process.  相似文献   

4.
The distributions of the three phases in gas–liquid–solid circulating fluidized beds (GLSCFB) were studied using a novel measurement technique that combines electrical resistance tomography (ERT) and optical fibre probe. The introduction of gas into a liquid–solid circulating fluidized bed (LSCFB), thus forming a GLSCFB, caused the increase of solids holdup due to the significantly decreased available buoyancy with the lower density of the gas, even with a somewhat increased liquid velocity due to the decreased liquid holdup giving space for the gas holdup. The gas passed through the riser in the form of bubbles, which tended to flow more through the central region of the riser, leading to more radial non‐uniformity in radial holdup of the phases. The gas velocity has the most significant effect on the gas phase holdup. While the gas velocity also has an obvious effect to the solids holdups, the liquid flow rate had a much more considerable effect on the phase holdups. The solids circulation rate also had a significant effect on the phase holdups, with increasing solids circulation rate causing much more increased solids holdup in the central region than close to the wall. A correlation was developed for the relative radial distributions of solids holdup in GLSCFB, as such radial profiles were found similar over a wide range of operating conditions, like those in a typical gas–solid circulating fluidized beds (GSCFB). Finally, the axial solids profiles in a GLSCFB was found to be much closer to those in an LSCFB which are very uniform, than those found in a GSCFB which are less uniform and sometime having a S shape. Water was used as the continuous and conductive phase, air was the gas phase and glass bead and lava rock particles were used as the solid and non‐conductive phase.  相似文献   

5.
Rotating packed bed has high efficiency of gas–liquid mass transfer. So it is significant to investigate fluid motion in rotating packed bed. Numerical simulations of the effects of packing feature size on liquid flow characteristics in a rotating packed bed are reported in this paper. The particle image velocimetry is compared with the numerical simulations to validate the turbulent model. Results show that the liquid exists in the packing zone in the form of droplet and liquid line, and the cavity is droplet. When the radial thickness of the packing is less than 0.101 m, liquid line and droplets appear in the cavity. When rotational speed and radial thickness of the packing increase, the average diameter of the droplets becomes smaller, and the droplet size distribution becomes uniform. As the initial velocity of the liquid increases, the average droplet diameter increases and the uniformity of particle size distribution become worse. The droplet velocity increases with the radial thickness of the packing increasing, and gradually decreases when it reaches the cavity region. The effect of packing thickness is most substantial through linear fitting. The predicted and simulated values are within ±15%. The cumulative volume distribution curves of the experimental and simulated droplets are consistent with the R-R distribution.  相似文献   

6.
不同圆球复合无序堆积床内流动传热数值分析   总被引:4,自引:1,他引:3       下载免费PDF全文
吴江权  杨剑  周浪  王秋旺 《化工学报》2015,66(Z1):111-116
圆球堆积床内孔隙分布影响其内部流场及温度场分布, 且小管径-球径比堆积床由于壁面限制, 内部孔隙率变化剧烈, 其内部流动和传热不均匀现象明显。针对D/dp为3的圆球无序堆积床构建了3种非等直径圆球复合堆积结构:径向分层复合堆积、轴向分层复合堆积以及随机复合堆积结构, 并采用DEM-CFD方法建模计算, 从径向及整体角度分析比较不同复合堆积床内流动换热特性及其流场和温度场分布的均匀性。结果表明:孔隙率及孔隙大小分布共同影响堆积床内流场和温度场分布;相对于单一等直径圆球堆积, 采用复合堆积结构能使堆积床内部孔隙率分布更均匀, 其内部流场和温度场分布也更为均匀;对于D/dp为3的堆积通道, 径向分层堆积结构对于提高整体流动换热性能及改善内部流动换热均匀性都有显著效果。  相似文献   

7.
An experimental investigation was carried out to examine the fluid dynamic and mass transfer behavior of structured packing, with the liquid and gas phase flowing co‐currently downwards in the column. Liquid to packing mass transfer coefficients for three positions within the pack were measured by an electrochemical method, varying both the liquid and gas loads as well as the physical properties of the liquid phase. Due to the high void fraction of structured packing, much higher liquid flow rates can be used than in traditional particle trickle‐beds. It was found that in the range studied, the gas superficial velocity has no effect on the mass transfer rate and thus, a general mass transfer correlation in terms of liquid Reynolds number only, was developed. Wetted areas and the radial distribution of liquid through the packing element were determined by a colorimetric method. Within the range of liquid flow rates investigated, complete wetting is not achieved, even with the low viscosity solutions. The measured ratios of hydraulic to geometric area, agree reasonably well with values predicted by existing relationships.  相似文献   

8.
RADIAL DISPERSION AND BUBBLE CHARACTERISTICS IN THREE-PHASE FLUIDIZED BEDS   总被引:2,自引:0,他引:2  
The effects of gas and liquid velocities, liquid viscosity and particle size on the radial dispersion coefficient of liquid phase (Dr) and the bubble properties in three-phase fluidized beds have been determined. A new flow regime map based on the drift flux theory in three-phase fluidized beds has been proposed.

In three-phase fluidized beds, D, increases with increasing gas velocity in the bubble coalescing and in the slug flow regimes, but it decreases in the bubble disintegrating regime. The coefficient exhibits a maximum value in the bed of small particles with increasing liquid velocity at lower gas velocities. However, it increases with increasing liquid velocity at higher gas velocities. In two and three-phase fluidized beds of larger particles (6,8 mm), Dr exhibits a maximum value with an increase in liquid viscosity at lower gas velocities, but it increases at higher gas velocities. The mean bubble chord length and its rising velocity increase with increasing gas velocity and liquid viscosity. However, the bubble chord length decreases with an increase in liquid velocity and it exhibits a maximum value with increasing particle size in the bed. The radial dispersion coefficients in the bubble coalescing and disintegrating regimes of three-phase fluidized beds in terms of the Peclet number in the present and previous studies have been well represented by the correlations based on the concept of isotropic turbulence theory.  相似文献   

9.
The previously presented [Zió?kowska, I., Zió?kowski, D., 1993. Modelling of gas interstitial velocity radial distribution over a cross-section of a tube packed with granular catalyst bed. Chemical Engineering Science 48, 3283-3292] mathematical model of gas flow field within a tube packed with a bed of spherical elements has been modernised. The modernisation consists in more rigorous treating of the radial gas dispersion within the bed voids in the fluid dynamic equations and in involving the formulae correlating the flow resistance in beds packed with various non-spherical elements (Raschig rings, cylinders) with their characteristics. The model solution relates the gas interstitial and superficial radial distributions with an empirical parameter—the local effective viscosity or corresponding Reynolds number, dependent on the geometric, aerodynamic and physical properties of the system which are usually known. The effective viscosity is associated with the kinetic energy dissipation due to the interface friction, the shear stresses in molecular and turbulent motion and the radial dispersion in the gas stream. Its knowledge makes possible the evaluation of the radial profiles of the gas interstitial velocity, as well as the dispersion coefficient, or corresponding Péclet number and the drag coefficient for individual element within the bed. The effective viscosity has been determined experimentally for beds of Raschig rings and cylinders by the method presented previously [Zió?kowska, I., Zió?kowski, D., 2001. Experimental analysis of isothermal gas flow field in tubes packed with spheres. Chemical Engineering and Processing 40, 221-233] and the results have been correlated with the system characteristics. Then the correlations have been used, according to the model, in evaluation of the radial distributions of the gas interstitial velocity, the radial dispersion coefficient and the drag coefficient for individual element within the bed.  相似文献   

10.
Hydrodynamics of a periodically operated trickling packed bed was studied with a high-speed wire-mesh sensor technique based on direct measurement of cross-sectional distributed local capacitances. Liquid cycles in the alumina packing were generated by periodic induction of gas and/or liquid phase in distinctive slow-mode. Hydrodynamics were characterized with respect to liquid saturation and liquid saturation distribution varying period length, split and time-averaged superficial gas and liquid velocities. The sensors technique allows direct access to local phenomena during liquid pulse breakthrough, to distribution patterns and their reproducibility at different cycle positions that were studied based on transient liquid saturation distribution data of different periodicity variables. Due to simultaneous measurement at four different axial reactor positions, pulse attenuation along the reactor and pulse velocity could be analyzed. Furthermore, hydrodynamics of different modes of gas-induced periodic cycling, e.g. gas cycling only, asynchronous and synchronous cycling of gas and liquid flow rate and alternating gas–liquid cycling, were studied.  相似文献   

11.
Parallel measurements of pressure gradients with a differential pressure probe and voidage profiles with a fibre optic system have been carried out to study gas flow distributions in the annulus of spouted beds. The observation of Grbavcic et al. (1976) that for a given fluid‐solid combination and column geometry the annulus pressure gradient at any bed level is independent of bed depth was corroborated again. Calibration curves of pressure drops versus superficial gas velocities for beds of voidage higher than the loose‐packed voidage were obtained by applying the Ergun (1952) equation, making it possible to estimate superficial gas velocities in the annulus using the static pressure gradient method. The local superficial gas velocity in the annulus was found to be higher in a deep bed than in a shallow bed of the same material, contrary to the conclusion (Grbavcic et al., 1976) that, for a given fluid‐solid combination and column geometry, the annulus fluid velocity at any level is independent of bed depth. Theoretical models and equations which do not account for the conical geometry near the bottom were found to underpredict superficial gas velocities in the annulus. Increasing the spouting gas flow was found to increase the net gas flow through the annulus.  相似文献   

12.
Liquid flow distribution has been a major concern when scaling up random packed columns. This study concerns the measurements of liquid flow distribution in a large scale column packed with 25.4 mm stainless steel Pall rings. The liquid flow distribution was studied with packed bed height from 0.9 to 3.5 m, liquid flow rate from 2.91 to 6.66 kg/m2·s, and gas flow rate from 0 to 3.0 kg/m2·s. In addition, three systems, water/air, aqueous detergent solution/air and Isopar/air, were used to study the effect of liquid physical properties on liquid flow distribution, and two different liquid distributors were employed to test the effect of liquid distributor design. It was found that liquid flow distribution was strongly influenced by liquid distributor design, packed bed height, gas flow rate and liquid viscosity, slightly influenced by liquid flow rate, but not by liquid surface tension.  相似文献   

13.
14.
Trickle bed reactors, which has been a workhorse for the process and refining industry for many decades, are progressively being challenged to provide solutions to deep processing of feedstocks. It is known that the structure of the packed bed which is formed with a certain arrangement of catalyst particles in the three-dimensional space within the reactor modulates in an unknown fashion the flow of fluids in the trickle bed, and in turn affects the conversion and selectivity in the trickle bed. Under deep processing conditions, the impact of the bed structure in modulating the overall reactor performance in a trickle bed is not as yet established. The question begets three sequential studies: estimating and quantifying the bed structure, measuring the liquid distribution, and estimating transport parameters (that are dependent on the bed structure and liquid distribution) so that the overall performance metrics as a reactor may be quantified. This contribution relates to the second of these questions, the first being already addressed to some extent by our earlier work. The current investigation aims at quantifying the effect of structure of the packed bed on hydrodynamics of the reactor. The impact of various packing techniques is discussed along with the development of correlations for two-phase pressure drop and dynamic liquid holdup. Liquid distribution is studied in depth for various operating parameters such as gas and liquid superficial velocities and column aspect ratio for uniform and non-uniform packing methods. The packing devices consist of various inserts attached to a hopper which can generate packing structures having void fraction in the range of 37.2%–46.4%. The maldistribution factor and flow maps for various aspect ratio of column suggest that maldistribution rises along with the increased channeling effect along the height of the column. Uniformly packed bed were measurably less prone to maldistribution along the length than the non-uniformly packed beds.  相似文献   

15.
Liquid spreading in thin rectangular vertical/inclined and oscillating porous media was simulated using a two-fluid dynamic model as a preliminary step in the design of fixed-bed reactors dedicated to marine applications. The model assessed the influence of capillary pressure and mechanical dispersion forces arising from the spatial inhomogeneity of point-source liquid injections in packed beds with different particle sizes, liquid and gas flow rates, liquid viscosity, static bed tilts, and rolling amplitudes and periods. In mildly static inclined beds, the lateral gravity force component and the capillary pressure force were the main factors affecting the liquid spreading. However, at considerable bed inclinations, the liquid phase accumulation in the lowermost regions of the packed bed tended to shrink the liquid spreading. Dynamic oscillatory evolutions of the liquid spills in the rolling bed enlarged the liquid spreading length as compared to the static vertical bed due to combined lateral liquid flow and increased liquid residence time.  相似文献   

16.
张尚  杨剑  王秋旺 《化工学报》2020,71(z2):24-31
颗粒堆积床作为反应器和分离器等的重要组成广泛应用于实际化学工业生产中。基于传统的有序堆积结构,提出了一种新型格栅支撑有序堆积结构,通过采用新型格栅支撑结构可以快速构建有序颗粒堆积床,其中包括格栅支撑简单立方、格栅支撑体心立方、格栅支撑疏松面心立方和格栅支撑密实面心立方颗粒堆积结构。对4种颗粒堆积单元通道内的流动换热进行模拟研究后发现,不同堆积形式的格栅支撑颗粒堆积床流动换热性能不同;在相同的面心立方堆积形式下,使用不同的格栅支撑结构,其流动传热也有明显差异;与传统有序堆积结构相比,在换热相差不多的情况下,格栅支撑有序堆积结构的压降减小,所以其综合换热效率有明显提升。  相似文献   

17.
Packed beds of particles are widely used in chemical industrial production as core units of fixed bed reactors, dryers, filters and other equipment. Based on traditional structured packed beds, this paper proposes some novel grille-support structured packed beds. The novel grille-support packed beds can be quickly constructed by using the new grille, including grille-support simple cubic (G-SC), grille-support body center cubic (G-BCC), grille-support loose face center cubic (G-LFCC) and grille-support compact face center cubic (G-CFCC) packing. In this paper, the flow and heat transfer characteristics of grille-support structured packed beds are numerically studied. Results show that, the packed beds with different packing forms have diverse flow and heat transfer performance. Under the same face center cubic packing form, the flow and heat transfer could be also significantly different with disparate grilles. It is also revealed that, compared with the traditional structured packed bed, the pressure drop of the grille-support structured packed bed is reduced while the heat transfer coefficient is similar, so the overall heat transfer efficiency is notably improved.  相似文献   

18.
When a high velocity gas jet is introduced into a packed bed a cavity is formed. The size of the cavity shows hysteresis on increasing and decreasing gas flow rates. This hysteresis leads to different cavity sizes at same gas flow rate depending on the bed history. The size of cavity affects the gas flow profiles in the packed bed. In this study the cavity size hysteresis phenomenon has been modeled using discrete element method along with turbulent gas flow. A reasonable agreement has been found between computed and experimental results on cavity size hysteresis. The effect of various parameters, such as nozzle height from the bed bottom and packing height, on the cavity size hysteresis has been studied. It is found that inter-particle interaction forces along with gas drag and bed porosity play an important role in describing the cavity size hysteresis. The injection of gas flow allows the particles to go to an unconstrained state than they were previously in, and their ability to remain in that state, even under decreased gas drag force, leads to the phenomenon of cavity size hysteresis.  相似文献   

19.
The adsorption of a true in-situ oil shale retort water on activated carbon at 278 and 298 K was studied in batch experiments and in packed beds with continuous liquid flow. The isotherms were nonlinear over the liquid concentration 0 to 875 mg/1. Breakthrough curves were obtained in packed bed experiments as a function of bed length, particle size, and liquid velocity. A differential approach was used to calculate the mass transfer coefficients and the rates of adsorption. Also the breakthrough curves were analyzed to establish the relative importance of the various individual mechanisms that contributed to the overall adsorption process.  相似文献   

20.
The adsorption of a true in-situ oil shale retort water on activated carbon at 278 and 298 K was studied in batch experiments and in packed beds with continuous liquid flow. The isotherms were nonlinear over the liquid concentration 0 to 875 mg/1. Breakthrough curves were obtained in packed bed experiments as a function of bed length, particle size, and liquid velocity. A differential approach was used to calculate the mass transfer coefficients and the rates of adsorption. Also the breakthrough curves were analyzed to establish the relative importance of the various individual mechanisms that contributed to the overall adsorption process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号