首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大尺寸光学玻璃元件主要采用细磨粒金刚石砂轮进行精密/超精密磨削加工,但存在砂轮修整频繁、工件表面面形精度难以保证、加工效率低等缺点。采用大磨粒金刚石砂轮进行加工则具有磨削比大、工件面形精度高等优点,然而高效精密的修整是其实现精密磨削的关键技术。采用Cr12钢对电镀金刚石砂轮(磨粒粒径151 μm)进行粗修整,借助修整区域聚集的热量加快金刚石的磨损,可使砂轮的回转误差快速降至10 μm以内。结合在线电解修锐技术,采用杯形金刚石修整滚轮对粗修整后的电镀砂轮进行精修整,砂轮的回转误差可达6 μm以内,轴向梯度误差由6 μm降至2.5 μm。通过对修整前后的金刚石砂轮表面磨损形貌成像及其拉曼光谱曲线分析了修整的机理。对应于不同的砂轮修整阶段进行熔融石英光学玻璃磨削试验,结果表明,砂轮回转误差较大时,工件材料表面以脆性断裂去除为主;随着砂轮回转误差和轴向梯度误差的减小,工件表面材料以塑性去除为主,磨削表面粗糙度为Ra19.6 nm,亚表层损伤深度低至2 μm。可见,经过精密修整的大磨粒电镀金刚石砂轮可以实现对光学玻璃的精密磨削。  相似文献   

2.
外圆磨削砂轮形貌仿真与工件表面粗糙度预测   总被引:1,自引:0,他引:1  
对磨削砂轮形貌、外圆磨削过程及工件表面形貌进行了仿真,实现了对工件表面粗糙度的预测,并对仿真模型进行了验证。采用Johnson变换和Gabor小波变换,实现了高斯域和非高斯域的转化,在随机域内对磨削砂轮形貌进行了仿真。根据外圆磨削运动过程,通过对砂轮和工件相互作用过程的分析,建立了磨粒运动轨迹方程和工件形貌方程,在考虑磨粒切削、耕犁与摩擦作用的条件下,对外圆磨削过程进行了仿真。建立了外圆磨削模型,实现了对加工工件形貌的仿真和粗糙度预测。  相似文献   

3.
复杂曲面碳化钨密封零件精密磨削实验研究   总被引:1,自引:1,他引:0  
碳化钨为典型的碳化物陶瓷材料,具有广泛的应用前景。其具有高硬度、高脆性及很高的耐磨性,所以难以采用传统的车削、铣削等工艺进行加工。在碳化钨工件上加工出复杂的曲面结构,并保证工件的面形精度及表面粗糙度则更加困难。为获得高表面质量的复杂曲面碳化钨密封工件,采用杯形金刚石砂轮单点磨削的方法实现碳化钨材料加工;设计压电陶瓷驱动柔性铰链微进给机构精确控制砂轮切深方向运动,从而实现复杂曲面加工的成形运动;探索最优工艺参数获得高面形精度和低表面粗糙度。分析了碳化钨磨削加工材料去除机理,以此指导柔性铰链精密进给机构设计,并规划杯形砂轮改善面形精度及表面粗糙度的磨削方法。实验结果表明:采用青铜基及树脂基杯形砂轮以45°倾角单点磨削碳化钨样件,其表面粗糙度值Ra由初始的500nm减小到15nm,面形精度RV值达到0.25μm。该装置可以在普通机床上磨削出高质量的碳化钨工件。  相似文献   

4.
粗粒度金属基金刚石砂轮磨削效率高,面形精度保持性好,可以满足各种成形零件的精密加工,但存在因修整困难而难以推广的问题。针对该问题,提出采用电火花机械磨削法修整粗粒度金刚石砂轮。探究了放电参数对修整效率及刀具损耗量的影响规律,并以修整效率为优化目标选取粗修整试验放电参数,以修整精度为优化目标选取精修整试验放电参数。设计了半径为3 mm的凹圆弧、凸圆弧砂轮修整试验,粗修整后凹圆弧、凸圆弧半径分别为2867.510μm、2919.254μm,尺寸误差分别为4.43%、2.69%,轮廓精度PV值为54.34μm;精修整后凹圆弧、凸圆弧半径分别为3005.107μm、3001.588μm,尺寸误差分别为0.17%、0.053%,轮廓精度PV值为17.28μm。最后,磨削碳化硅陶瓷试件,获得凹圆弧、凸圆弧半径的尺寸误差分别为0.24%、0.045%,工件表面粗糙度Ra可达0.463μm。  相似文献   

5.
在前人磨削理论基础上对砂轮结构做了更接实际的随机性假设,应用计算机数字模拟技术对磨削全过程进行了模拟,获得了磨削过程和磨削表面的许多重要数据和结果,给出了砂轮表层的磨料中中切削的磨粒数目和切屑的长度、厚度和体积。在研究砂轮结构的基础上得出砂轮磨粒分布的随机性是磨削加工能产生表面低粗糙度的重要因素。对砂轮磨料粒度及砂轮修整的定量研究表面,要获得超低粗糙度值磨削表面不仅需要选择较细磨粒,而且需要对砂轮  相似文献   

6.
分析磨削氮化硅陶瓷材料时产生的磨削力,对磨削力的变化规律进行探索,对磨削过程中磨削力的大小进行预测,提高磨削效率和加工表面质量。通过超景深电子显微镜对砂轮表面磨粒分布状况进行扫描,计算得到砂轮表面的磨粒密度,建立多颗磨粒随机分布的三维虚拟砂轮模型,将砂轮模型导入到Abaqus有限元仿真软件中进行氮化硅陶瓷的磨削仿真,得到不同参数组合下的磨削力仿真数据。在MK2710的数控磨床上进行氮化硅陶瓷的磨削实验,获取相应的磨削力实验数据,比较实验数值与预测数值,并分析影响磨削力因素的主次顺序。实验数值与预测数值具有一致性,磨削深度对磨削力的影响最大,其次为砂轮转速和径向进给速度。  相似文献   

7.
微细磨粒砂轮的试验研究是当前砂轮试制的主要发展方向。对超微磨粒电泳效应的特性进行了研究,利用该特性研制了一种高密度、低结合度的电泳砂轮,并对脆性材料进行磨削加工。试验结果表明,电泳砂轮能十分显著地降低工件表面的粗糙度。  相似文献   

8.
针对磨削热引起的工件热胀冷缩效应对磨削后的工件表面微观形貌的影响,提出一种考虑磨削热变形影响的磨削表面微观形貌建模方法。假设磨粒为正四面体建立砂轮形貌;根据磨削运动学原理,建立考虑磨削热变形效应的单颗磨粒三维切削轨迹,并结合砂轮形貌与单颗磨粒轨迹,建立磨削表面微观形貌预测模型,通过磨削实验对仿真结果进行验证,结果为该模型最小误差仅0.135%,最大误差为13.31%,验证了在磨削热变形效应影响下的仿真结果的准确性。  相似文献   

9.
砂带磨削加工表面粗糙度预测与验证   总被引:1,自引:0,他引:1  
《工具技术》2021,55(4)
为了研究砂带磨削过程中主要工艺参数对磨削表面粗糙度的影响规律,建立了砂带磨削工件的表面轮廓模型,通过对砂带磨粒运动轨迹的研究分析,由单个磨粒的运动方程建立多个磨粒的运动方程。采用单因素试验法,由仿真软件合成磨削加工表面的三维形貌与粗糙度值的变化趋势,通过建立表面粗糙度回归数学模型与叶片磨削试验进行理论分析验证。结果表明,不同工艺参数磨削后工件表面粗糙度的仿真值与试验结果吻合度较好,为实际砂带磨削工艺参数的选择和优化提供理论依据与参考。  相似文献   

10.
考虑磨粒排布方式对砂轮磨削效率和性能有重要影响,设计制备磨粒无序和有序排布的加压内冷却砂轮,利用砂轮表面形貌检测和图像识别技术,建立砂轮磨削GH4169高温合金的三维有限元模型。采用不同磨粒排布的砂轮开展磨削GH4169高温合金的实验研究,对比分析磨削力、磨削温度、加工表面粗糙度以及表面微观形貌,研究磨粒无序和有序两种排布方式对砂轮磨削性能的影响。结果表明:对于加压内冷却砂轮而言,相对磨粒无序排布,磨粒有序排布方式能获得更优良的加工表面质量,磨削力、磨削温度和表面粗糙度均降低,且工件表面形貌更加规则完整。  相似文献   

11.
F-Theta自由曲面透镜的精密与镜面磨削   总被引:5,自引:0,他引:5  
针对光学玻璃的F-Theta自由曲面透镜加工困难等问题,提出将金刚石砂轮的椭圆环面代替圆环面,进行F-Theta自由曲面磨削加工,研究形状误差的补偿磨削方法和光学玻璃的镜面磨削工艺。根据F-Theta透镜的自由曲面建立砂轮与工件相切的刀具轨迹法向算法。采用#46粗金刚石砂轮修整成椭圆环面,提出自由曲面磨削的法向误差补偿加工模式。最后,采用#3000超细金刚石砂轮的椭圆环面进行轴向磨削试验。试验结果表明:传统的垂直误差补偿磨削可减小面形误差45.9%及其PV值11.6%;而新提出的法向误差补偿磨削可减小面形误差47.9%及其PV值41.5%。此外,超细砂轮磨削可使得自由曲面的粗糙度达到28 nm,其镜面磨削工艺有别于较粗砂轮磨削工艺。因此,椭圆环面砂轮的法向补偿磨削是提高自由曲面加工精度的有效方法,而且,无需研磨抛光就可以实现光学玻璃的自由曲面镜面磨削。  相似文献   

12.
提出了一种基于动态轮廓采样法的轴向超声振动辅助磨削的工件表面形貌预测方法。假设磨粒直径服从正态分布,磨粒位置服从随机分布,生成砂轮表面形貌的模型,从运动学角度建立了轴向超声振动辅助磨削过程中任意磨粒的轨迹方程,针对磨粒运动轨迹的特点,提出了动态轮廓采样方法。通过建立磨削沟槽变宽模型,引入了磨削弹性变形模型和塑性堆积模型,对动态轮廓采样方法进行了修正,最终得出工件表面形貌的预测结果。对预测结果进行了试验验证,对比分析了工件表面形貌的预测结果和实测结果,两者特征相似,且比较工件表面粗糙度的预测值和实测值平均误差为5.3%,从而验证了该预测方法的准确性。  相似文献   

13.
分析了磨削液对陶瓷结合剂CBN砂轮磨削性能的影响,使用3种磨削液在精密外圆磨床M1420E上进行了磨削加工实验,用加工表面微观形貌、表面粗糙度R。值、工件表面残余应力以及砂轮径向磨损量对磨削液效能进行评价。结果表明,轻质润滑油不仅能提高工件表面质量,降低表面粗糙度值,而且砂轮磨损量明显降低,乳化液和化学合成液对磨削性能的影响各有利弊,润滑油是陶瓷结合剂CBN砂轮磨削的优选磨削液。  相似文献   

14.
刘伟  毛国安  严灿  李博鑫 《中国机械工程》2022,33(15):1787-1793
基于模压成形和真空固相烧结工艺,选用Cu-10Sn结合剂、经氧化预处理的TiH2钎焊造孔剂、MBD8金刚石磨粒,制备出磨粒把持力大、孔隙分布均匀的多孔钎焊金刚石砂轮(PBDGW)。开展PBDGW与多层钎焊金刚石砂轮(MBDGW)的SiC陶瓷磨削对比试验,从磨削力、工件表面粗糙度和表面/亚表面形貌等方面分析砂轮的磨削性能。试验结果表明:与MBDGW相比,PBDGW磨削SiC陶瓷的切向力下降了8.4%~23.6%、法向力下降了10.2%~38.6%,磨削加工表面粗糙度平均降幅为10.4%;工件表面完整性较好,表面/亚表面的脆性断裂、微观裂纹等缺陷较少。  相似文献   

15.
超磨粒(金刚石,CBN)砂轮的出现,使难切削材料的高精度、高效率加工成为可能。本文介绍日本利用超磨粒砂轮进行高效磨削加工的方法。一、高效磨削加工方法1.间歇进给磨削间歇进给磨削采用成形砂轮进行曲面磨削,在深切工件的同时进给量很小,用于要求保证工件形状精度的成形和深槽加工。间歇进给磨削的进刀量为往复磨削进刀量的100~200倍,其走刀量仅为往复磨削的1/100~1/200。间歇进给磨削前,要使用修整工具对砂轮表面进行创型,通过往复进给的循环操作,工件边缘与砂轮最初接触时不产生重复冲击,砂轮变形很小,有利于防止脆性…  相似文献   

16.
齿轮磨削表面粗糙度的建模研究是认识齿轮完整性的重要基础。由于砂轮-工件的宏观复杂形状,以及齿轮磨削过程中局部磨削条件存在差异,限制了经典平面磨削粗糙度建模方法向齿轮磨削的直接迁移。为此,提出考虑局部磨削条件变化的齿轮成形磨削表面粗糙度建模方法。根据成形磨齿的磨削机制,分析磨齿砂轮与齿轮工件的运动关系,推导得到宏观几何形状影响下不同局部位置的磨粒运动轨迹方程,建立了考虑砂轮复杂形状的磨粒随机分布特性的砂轮模型;基于磨削表面粗糙度的创成机制,通过迭代算法得到成形磨齿表面粗糙度;进行了12Cr2Ni4A齿轮材料渗碳淬火后的成形磨削实验研究。结果表明,所提出的成形磨齿表面粗糙度预测模型与实验结果具有较好的一致性,模型可以很好地反映局部磨削条件差异下齿面粗糙度沿齿廓方向的分布。本文研究对成形磨齿表面粗糙度创成机制提出了一个新的认识,为后续研究提供了更多的参考与基础。  相似文献   

17.
针对核主泵关键部件材料镍基碳化钨涂层,采用三种磨粒粒度金刚石砂轮进行平面磨削试验,研究工艺参数、磨粒粒度对涂层材料磨削力、表面粗糙度和表面残余应力的影响规律。实验结果表明:不同粒度砂轮磨削时,随着磨削深度和工件进给速度增加,法向磨削力和切向磨削力均逐渐增大,表面粗糙度值呈现先增大、后减小再增大的趋势,平行和垂直磨削方向的表面残余压应力逐渐增大,且垂直磨削方向应力值更大。综合考虑磨削力、表面粗糙度、磨削表面残余应力和磨削加工效率,600目砂轮具有较好的加工效果,其对应的优化磨削参数为:磨削深度为10μm,工件进给速度为8 m/min。  相似文献   

18.
金刚石滚轮成形砂轮修整器的结构设计   总被引:1,自引:0,他引:1  
针对加工轴类工件时,常会遇到尺寸精度要求高、表面粗糙度值小的各种圆弧的难加工问题,提出采用成形磨削法进行圆弧的加工,并针对圆弧加工用的成形砂轮,设计出金刚石滚轮成形砂轮修整器。  相似文献   

19.
光学自由曲面反射镜模芯的镜面成型磨削   总被引:2,自引:0,他引:2  
采用精密修锐修整的圆弧形粗金刚石砂轮在CNC精密磨床上进行了数控成型磨削加工,实现了高效镜面磨削。分析金刚石砂轮圆弧形轮廓的成型修整原理,建立了圆弧形修整的数控模式。通过建立曲面数控成型磨削的行走轨迹算法,实现了自由曲面的圆弧包络成型磨削加工。分析了磨削工艺参数和砂轮出刃形貌参数与超光滑表面形成的作用机制,进行了镜面磨削试验并检测表面微观形貌和粗糙度,分析实现镜面磨削的脆/塑性磨削转换机理。理论分析表明,降低砂轮行走速度,提高砂轮转速以及改善出刃形貌可以获得纳米级粗糙度的超光滑磨削表面。试验结果显示,先将砂轮修锐修整再控制砂轮行走速度小至15 mm/min时,表面粗糙度小于10 nm以下,且微观加工表面没有发生脆性破坏,形成镜面。加工高速钢自由曲面时,面形误差(PV值)可以达到10 μm以下,表面粗糙度Ra可以达到约16 nm。实验结果表明:利用数控技术和粗金刚石砂轮可以实现自由曲面模芯的高效镜面磨削加工,保证了高精度的光学自由曲面反射镜注塑模芯。  相似文献   

20.
为了研究蜗杆砂轮展成法磨削齿轮的加工系统中不同因素对齿轮精度的影响规律,采用空间坐标系转换法构建了蜗杆砂轮磨削齿轮系统的运动学模型,并模拟分析了砂轮磨粒磨削齿面的运动空间轨迹.研究表明,砂轮廓形径向误差对齿轮精度影响较小.齿廓偏差与螺旋线偏差主要受砂轮廓形切向误差、安装夹角误差与机床传动比误差的影响,而齿距偏差主要受安...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号