首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
位阻胺选择性配方溶剂尾气处理装置工业应用   总被引:4,自引:0,他引:4  
为了解决常规甲基二乙醇胺(MDEA)脱硫溶剂在低压下脱硫效果不理想,导致排放尾气中SO_2浓度升高的问题,利用位阻胺与H_2S反应具有良好活性、同时能较好抑制位阻胺与CO_2反应的特点,研究开发出了位阻胺选择性脱硫配方溶剂,并在处理量为1×10~4m~3/d的装置上进行中间放大试验的基础上,在中国石油西南油气田公司川中油气矿龙岗天然气净化厂硫磺回收加氢尾气脱硫装置上进行了工业应用。在工业应用期间,考察了溶剂在不同吸收塔板数、不同贫液入塔温度、不同溶液循环量等条件下的吸收性能,还考察了脱硫溶液的再生性能,确定了较适宜的工艺操作参数。应用1年后的考核结果表明:(1)该位阻胺选择性脱硫配方溶剂在进尾气脱硫吸收塔气体中H_2S含量为0.77%~3.96%、CO_2含量为23.91%~32.79%的气质条件下,可使净化尾气中H_2S含量低于30 mg/m~3;(2)与装置原用的常规MDEA相比,净化尾气中H_2S含量降低58.45%;(3)该位阻胺选择性脱硫配方溶剂的再生性能良好,再生后贫液中H_2S和CO_2含量均小于0.12 g/L。  相似文献   

2.
高含硫天然气CCJ脱硫脱碳复合溶剂的中试研究   总被引:3,自引:3,他引:0  
以质量分数为45%的N-甲基二乙醇胺(MDEA)水溶液为基础组分,根据天然气中酸气组成,按一定比例加入多种活性剂、消泡剂和缓蚀剂,配制成CCJ脱硫脱碳复合溶剂。采用天然气脱硫脱碳中试装置,以净化气中H_2S、CO_2、有机硫含量为评价指标,考察了CCJ复合溶剂对高含硫天然气的净化能力及溶剂的抗发泡性能。结果表明,当吸收温度为50℃、气液比为500m~3/m~3、再生温度为108℃时,复合溶剂的净化能力最佳;在原料气中酸气组成为H_2S体积分数7.12%、CO_2体积分数4.57%、有机硫质量浓度413.77mg/m~3、吸收压力6.0 MPa的条件下,CCJ复合溶剂完全可以使净化气中H_2S质量浓度≤6mg/m~3、CO_2体积分数≤0.5%、有机硫质量浓度≤16mg/m~3,且复合溶剂具有良好的抗发泡性能。  相似文献   

3.
《天然气化工》2019,(5):45-49
为改善甲基二乙醇胺(MDEA)的天然气选择性脱硫脱碳性能,降低溶剂再生能耗,提出采用一乙醇胺(MEA)活化MDEA法进行天然气选择性脱硫脱碳,并采用Aspen HYSYS对工艺进行了模拟。结果表明:添加MEA加速了吸收剂的H_2S、CO_2吸收速度,提高了脱硫脱碳效率,H_2S选择因子由55.5提高至96.6,贫液循环量下降,综合考虑吸收性能和再生能耗,以4%的MEA添加量为宜;MEA活化MDEA工艺可将再生能耗由3.54 GJ/t CO_2显著降低至2.15GJ/t CO_2。该工艺可显著活化传统MDEA工艺的选择性脱硫脱碳性能,并大幅降低溶剂的再生能耗,有广阔的应用前景。  相似文献   

4.
普光气田是我国迄今为止开发的规模最大、丰度最高的特大型海相碳酸盐岩整装气田,天然气中H2S含量高达13%~18%(φ),CO2为8%~10%(φ),有机硫化合物高达340.6mg/m3,常规脱硫脱碳工艺无法适用。该文通过对高含硫工艺技术进行研究分析,制定了普光气田天然气净化工艺路线,选用甲基二乙醇胺(MDEA)作为吸收溶剂,通过催化反应脱除天然气中有机硫,设置级间冷却器控制CO2的吸收,吸收溶剂通过串级吸收、联合再生,降低了装置能耗和运行成本。该工艺在普光气田应用后,外输产品气中H2S含量在6mg/m3以下,CO2含量低于3%(φ),总硫含量低于200mg/m3。  相似文献   

5.
选择性胺过程脱除酸气   总被引:1,自引:1,他引:0  
胺溶剂的选择选择性吸收硫化氢(H_2S)的理想溶剂是对H_2S吸收能力高而对二氧化碳(CO_2)吸收能力低。常用的胺溶剂中不存在这样一种溶剂。然而如果应用H_2S和CO_2的吸收速度之差别,也可以用一种胺溶剂选择性吸收  相似文献   

6.
威远脱硫一厂是我国自行设计、施工的第一个大型天然气净化处理装置。设计处理能力为14×10~5m~3<两套>。1967年2月投产。其脱硫工段系采用乙醇胺法脱硫,乙醇胺浓度为12~16%(重量)。原料天然气中H_2s含量为1.46%、CO_2含量为5.14%。再生塔的条件是将吸收饱和后的乙醇胺溶液(简称富液)通过降压和加温而解脱出被吸收的H_2S和CO_2,再生成含H_2S  相似文献   

7.
建立了一种用离子色谱测定天然气中H_2S含量的新方法。该方法将天然气中H_2S通过碱液吸收,过氧化氢氧化为硫酸根离子,用离子色谱仪对溶液中的硫酸根离子浓度进行测定,进而计算出天然气中H_2S含量。在H_2S质量浓度为0.60~30mg/m~3之间的峰面积与质量浓度呈线性关系,相关系数为0.999 8。方法检出限为0.11mg/m~3。对H_2S质量浓度为1.52mg/m~3的天然气标准气体进行10次测定,相对标准偏差为3.14%。对3个H_2S质量浓度分别为1.52mg/m~3、3.04mg/m~3和9.13mg/m~3的天然气标准气体进行测定,相对误差均小于5%。  相似文献   

8.
国外动态     
Flexsorb溶剂法脱硫本方法由于使用不同的溶剂,可自各种气流中选择性的脱除H_2S或同时脱除酸性杂质(CO_2,COS,CS_2和硫醇).该法用SE或SE~ 溶剂,可将加氢后的Claus尾气中H_2S含量脱至小于10ppm(V),管输天然气中H_2S脱至小于0.088g/Nm~3.脱硫副产物为浓H_2S气流;该法用PS溶剂处理后的气体含H_2S小于0.088g/Nm~3、CO_2小于或等于50ppm(V)、COS和CS_2小于1ppm(V)、硫醇脱除率大于95%,副产气流为浓缩酸气.PS溶剂主要用于天然气净化.Flesorb法使用典型的胺法脱硫过程.Flexsorb SE是一种新的受阻胺水溶液,SE~ 是强化水溶液,吸收H_2S的选择性得到改善;PS是混合溶液,含有受阻胺、物理溶剂和水.  相似文献   

9.
物理溶剂吸收法是利用天然气中H_2S和CO_2等酸性组分与CH_4等烃类在溶剂中的溶解度显著差异来实现脱硫脱碳。通过HYSYS模拟,对比了几种常用物理溶剂的吸收效果,从溶解度参数的角度分析了溶剂溶解性能的差异。分析结果表明:依据溶解度参数可以确定物理溶剂脱酸及选择性脱硫的能力;吸收效果好的溶剂溶解度参数应与溶质(H_2S、CO_2、有机硫等)溶解度参数接近;选择性脱硫效果好的溶剂溶解度参数及其分布尽可能接近H_2S且与CO_2有一定偏差。溶解度参数对天然气脱硫脱碳物理溶剂吸收法的选择具有重要指导意义。  相似文献   

10.
Econamine过程     
应用:脱除气体中的酸性杂质H_2S、CO_2、COS 和CS_2。产品:处理过的气体(H_2S<57mg/m~3,CO_2低于50×10~■;COS 和CS_2均<10~■);浓缩的酸气.工艺过程:用一种伯烷醇胺,二甘醇胺(DGA)的水溶液吸收(1),工艺过程是典型的胺法流程。将加热的富液再生(2);冷凝水返回再生塔;酸气去火炬、硫磺回收或进一步处理。再生塔热量由一种适宜的介质供给。贫液通过交换器和冷却器再循环到接触塔。  相似文献   

11.
天然气研究所1989年在天然气净化、油田化学、分析测试、环境保护等方面共获科研成果46项。其中,部、局鉴定的成果25项,占54×10~(-2)。现将部份科研成果简介如下。1 用物理-化学混合溶剂选择性脱除H_2S 与有机硫试验研究此混合溶剂在适宜的溶液组成、一定的压力、温度、气液比等条件下,可选择脱除硫化氢与有机硫。净化气中硫化氢含量稳定低于20mg/m~3,总有机硫低于60mg/m~3,二氧化碳低于3×10~(-2),符合国家规定的气质标准,经济效益显著。  相似文献   

12.
通过空气氧化法实现硫回收的克劳斯工艺的缺点是:①损失氢气源;②需要准确地控制空气用量;③需要脱除废气中的微量硫氧物;④CO_2/H_2S比不能超过某一限度. 原文作者开发了一个可将H_2S分解为硫和氢气的温和过程.该过程不需空气氧化,不需进行废气处理,所用溶剂对H_2S有很高的吸收选择性,因而不受CO_2/H_2S比的限制.该过程的基本原理是:以N-甲基-2-吡咯烷酮(NMP)为溶剂,使H_2S与叔  相似文献   

13.
针对新疆油田克浅井区稠油热采套管气H_2S含量超标,对3种除硫化氢试剂SAT-1、SAT-2和SAT-3进行评价和应用。结果表明:3种除硫剂性质稳定,单位时间内吸收H_2S质量分别为0.159 6g/g、0.136 4g/g和0.125 0g/g,饱和吸收H_2S质量分别为0.176 7g/g、0.216 1g/g和0.327 1g/g;SAT-1和SAT-3对H_2S具有较高的选择性,SAT-2对H_2S的选择性较低。现场评价表明,SAT-1和SAT-3均能使稠油热采井套管气H_2S浓度降低至10mg/L以下,现场使用寿命均超过100d,适应于套管气除H_2S的现场应用;除硫剂SAT-1现场推广应用140余井,单井H_2S浓度从500mg/L降至低于10mg/L,克浅井区稠油热采套管气H_2S超标得到了有效治理。  相似文献   

14.
正一种处理含H_2S和CO_2的流体流的方法,其中:a)在第一吸收器中在1. 0~15. 0 MPa的压力下用再生的H_2S选择性吸收剂的第一子流处理流体流,获得经处理的流体流和负载有H_2S的吸收剂; b)将负载有H_2S的吸收剂通过与再生的H_2S选择性吸收剂间接热交换而加热; c)将加热的负载有H_2S的吸收剂在低压膨胀容器中膨胀至0. 12~1. 0 MPa的压力,获得富含CO_2的第一废气和部分再生的吸收剂; d)将部分再生的吸收剂在解吸塔中再生,获得富含H_2S的废气和再  相似文献   

15.
本文以DIPA-H_2O-H_2S-CO_2体系的气、液平衡曲线处理湿壁塔中用DIPA水溶液对H_2S选择性吸收的实验数据,得出了实测的H_2S、CO_2总气膜传质系数.以伴有化学反应吸收的双膜理论予以校核,结果是吻合的.建立了DIPA-H_2O-H_2S-CO_2体系选择性吸收装置的逐板计算程序,以及气相中H_2S、CO_2的浓度沿塔变化的数学表达式.以此验证了引进工业装置的设计数据,也提出了甲基二乙醇胺(MDEA)可能是一种比DIPA更为优越的选择性溶剂的理论依据.  相似文献   

16.
正日前,埃克森美孚和巴斯夫公司宣布,其正在埃克森美孚子公司帝国石油公司位于加拿大安大略省萨尼亚的炼油厂进行气体处理溶剂的商业化验证。据称,与其他选择性溶剂相比,该溶剂改进了H_2S选择性,降低了能耗。该技术旨在改善H_2S的选择性去除,并最大限度地减少从气体物流的CO_2共吸收,可使炼油商和天然气加工商能够增加现有设备的产能并降低运营成本。两家公司2018年早些时候表示,他们已经结成联盟,共同开发用于天然气加工和石油精炼的气体处理溶剂和工艺技术,旨在更高效地达到硫排放标准。  相似文献   

17.
为了解决高含硫天然气脱硫工艺中脱硫选择性差、能耗高等问题,提出了基于大数据的高含硫天然气脱硫工艺优化方法。首先,通过工艺流程分析,发现对性能指标有显著影响的决策参数,建立无迹卡尔曼滤波神经网络动态模型,获知了脱硫工艺的潜在规律;然后,针对原脱硫工艺中H_2S、CO_2过分脱除问题,采用偏好多目标优化的方法,分别以H2S浓度逼近2.5 mg/m~3、CO_2浓度逼近2%为目标函数,采用非支配性排序遗传算法对模型进行多目标优化,获得了最佳工艺参数。采集某高含硫天然气净化厂脱硫单元2014年1—12月的生产数据,取前80%数据作为训练集,后20%数据作为测试集,进行了仿真实验。结果表明:1所建立的动态模型能够较好地反映脱硫工艺生产规律;2优化结果建议适当降低一级吸收塔温度,提高二级吸收塔温度,提高闪蒸罐压力,并减少胺液循环量;3优化后净化气中H_2S浓度将由0.62 mg/m~3提高至3.22 mg/m~3,CO_2浓度由1.19%提高至1.99%,脱硫选择性显著提高;4相对胺液循环量下降16.67%,蒸汽消耗量减少,净化气产率提高0.8%,总体实现了增产节能降耗的目的。  相似文献   

18.
在总浓度为2 mol/L的条件下,运用小型反应釜,采用恒压吸收法和恒容吸收法,对以MDEA为主体、DGA与AMP为添加剂的复配胺液进行不同物质的量比下选择性吸收H_2S性能的实验研究。通过分析气相浓度、吸收速率、酸气脱除率及选择性因子,优选出不同复配胺液在此浓度下选择性脱硫的最优配比。实验结果表明:2mol/L MDEA+DGA复配胺液在物质的量比为10∶3时,对原料气中H_2S的吸收速率、脱除率均较高,对CO_2的吸收速率、脱除率均较低,选择性因子最大,为该复配胺液的最优配比;2mol/L MDEA+AMP复配胺液在物质的量比为10∶3时,对原料气中H_2S的吸收速率、脱除率均较高,对CO_2的吸收速率、脱除率均较低,选择性因子最大,为该复配胺液的最优配比。  相似文献   

19.
加氢尾气深度脱硫溶剂CT8-26的研究   总被引:2,自引:2,他引:0  
针对硫磺回收装置加氢尾气的气质特点,研发出了对H_2S具有良好脱除效果的配方脱硫溶剂CT8-26。室内试验表明,与MDEA相比,CT8-26可使脱硫后的净化尾气中H_2S质量浓度降低70%以上。在天然气净化厂硫磺回收装置加氢尾气的气质条件下,采用CT8-26溶剂体系可使净化尾气中的H_2S质量浓度30mg/m~3;在炼厂硫磺回收加氢尾气的典型气质条件下,采用CT8-26可使净化尾气中的H_2S质量浓度10mg/m~3。  相似文献   

20.
利用化工流程模拟软件Aspen plus对低温甲醇洗酸性气体吸收塔产出液再生过程进行模拟研究。得到H_2S浓缩塔气相流股和热再生塔液相流股中CO_2、H_2S的物质的量分数(是否应为"物质的量分数",即旧称摩尔分数,请通篇核对)剖面图和温度剖面图。通过对H_2S浓缩塔和热再生塔的塔板核算和水力学计算,确定了塔板基本结构参数。通过灵敏度分析,考察了CO_2解析塔中温度压力、H_2S浓缩塔中气提N_2流量、热再生塔中冷凝器温度压力及精馏塔回流比对净化气CO_2、H_2S含量的影响。当CO_2解析塔温度为-35°C、压力为0.6MPa,H_2S浓缩塔再生N_2流量为1500kmol/h,热再生塔冷凝器温度为20°C、压力为0.3MPa,精馏塔回流比为0.45时,产品气满足净化要求,H_2S物质的量分数达到68.9%、甲醇质量分数达到99.9%满足回收再利用的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号