共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
分别用有限元法和标准SY/T6151-1995的方法分析计算了含腐蚀性体积缺陷弯管的极限载荷和安全服役状况,结果表明:两种方法的计算结果接近;标准SY/T6151-1995所编制的分析评定软件,可简便而有效地评价管道腐蚀损伤。 相似文献
3.
含腐蚀凹坑缺陷管道的极限载荷研究 总被引:7,自引:0,他引:7
腐蚀凹坑是石油与天然气输送及石化管道常见的缺陷之一 ,会使管道产生应力集中 ,抗疲劳载荷能力降低。为寻求腐蚀球形凹坑对压力管道极限载荷的影响 ,用有限元弹塑性分析法和试验方法 ,对含腐蚀球形凹坑缺陷的压力管道进行研究 ,得到了含不同球形腐蚀凹坑缺陷压力管道在内压和弯矩联合作用下的极限载荷。试验研究证明 ,在内压和外弯矩作用下 ,腐蚀球形凹坑底部应变值最大 ,并首先屈服 ,试验测定载荷 -应变曲线与有限元计算的基本一致 ,最大误差为 7 3 2 %。腐蚀凹坑半径相同时 ,管道的极限载荷随凹坑深度的增加而降低 ;而凹坑深度相同时 ,极限载荷随凹坑半径的加大而降低。 相似文献
4.
以天然气加热炉管为研究对象,针对含缺陷管道剩余寿命预测问题,分别基于ASME-B31G准则和有限元分析、优化设计理论,建立了计算含腐蚀缺陷管道剩余寿命的方法,根据天然气加热炉管的检测数据,应用建立的两种计算方法对天然气加热炉管剩余寿命进行了预测计算,并对两种剩余寿命预测方法、预测结果进行了讨论分析。 相似文献
5.
海底管道在服役运行过程中,由于输送介质中含有的腐蚀性物质以及周围海水、海泥等环境介质的作用,很可能会发生管内和管外腐蚀,海管壁厚会均匀减薄或形成腐蚀坑、洞等局部腐蚀缺陷。海管强度会因腐蚀缺陷而降低,操作不当时还会引发海管破损和泄漏。安全评价又称适用性评价,是对含缺陷结构是否适合于继续服役使用而进行的定量工程评价。研究比较了海底管道腐蚀缺陷安全评价常用标准和方法的特点、异同及适用条件,并以某海底管道内表面局部腐蚀缺陷为案例,给出了依据ASME B31G—2012《Manual for Determining the Remaining Strength of Corroded Pipelines》和API 579—2016《Fitness-for-Service》进行腐蚀缺陷安全评价的详细步骤和方法。 相似文献
6.
7.
文章采用ANSYS有限元法对含有缺陷的天然气管道的剩余强度进行分析,分析轴向腐蚀缺陷的长度和深度对管道剩余强度的影响,以及周向腐蚀、均匀腐蚀对管道剩余强度的影响.分析表明:采用有限元方法对含腐蚀缺陷管道计算剩余强度是可行的,以及各种腐蚀状况下管道的剩余强度.有限元分析法可为实际工程应用提供理论参考依据. 相似文献
8.
9.
含腐蚀缺陷燃气管道极限载荷的有限元分析 总被引:1,自引:0,他引:1
利用有限元弹塑性分析方法,对含腐蚀缺陷的燃气管道进行了非线性分析,研究了腐蚀缺陷的长度、宽度和深度对燃气管道极限裁荷的影响.并和舍腐蚀缺陷管道的全尺寸爆破试验结果以及ASMEB31G计算的结果进行对比,证明了用有限元方法分析腐蚀缺陷管道的可行性. 相似文献
10.
11.
《中国海上油气》2021,(5)
腐蚀是海底管道最常见的缺陷形式,明确腐蚀缺陷对海底管道压溃压力的影响规律,建立可靠的压溃压力计算方法对评估海底管道的安全运行具有重要意义。考虑几何非线性和材料非线性,建立了含腐蚀缺陷的海底管道数值仿真模型,通过与文献试验数据对比验证了其可靠性。在此基础上,开展了腐蚀参数敏感性分析,得到了腐蚀深度、长度和宽度对海底管道压溃压力的影响规律:腐蚀长度、宽度和深度对海底管道的压溃压力影响效果依次递增,相对于轴向短腐蚀管道,腐蚀深度和腐蚀宽度对长腐蚀管道压溃压力的影响更大。基于敏感性分析和大量数值计算结果,采用非线性回归方法得到了含腐蚀缺陷海底管道压溃压力的计算公式,将该公式计算结果与文献试验结果和现有方法计算结果进行了对比,本文回归公式与试验值的误差小于10%,与现有计算方法的误差小于3%,证明本文回归公式能较为准确地预测含腐蚀缺陷海底管道的压溃压力。相关成果为含腐蚀缺陷海底管道的完整性评价提供了参考。 相似文献
12.
为了加强含双腐蚀缺陷高钢级管道的安全评价,基于塑性失效准则,利用Workbench有限元分析软件对缺陷处的等效应力和剩余强度进行了模拟,考察了缺陷长度、缺陷深度和缺陷间距等参数对剩余强度的影响,利用99%相互作用准则确定极限作用距离,形成双腐蚀缺陷剩余强度评价方法,并进行数据验证。结果表明,随着内压的增加,管道先后经历弹性阶段、屈服阶段和强化阶段;在缺陷深度较深时,轴向间距对缺陷轴向分布时的最大等效应力影响较大,不同环向间距下的最大等效应力几乎不发生变化。当相邻腐蚀轴向间距系数n小于2.5、相邻腐蚀环向间距系数c小于1.26时,需考虑缺陷间的相互作用和影响;修正后公式可用于计算含双点腐蚀缺陷的高等级钢剩余强度,结果较DNV-RP-F101规范更接近有限元分析结果,最大相对误差不超过1.74%。研究结果可为提高管道完整性管理水平提供理论依据和实际参考。 相似文献
13.
借助ANSYS软件,以管道内双点腐蚀为研究对象,通过建立椭圆形双点腐蚀缺陷和正方形双点腐蚀缺陷,研究双点腐蚀缺陷在不同的缺陷深度、缺陷间距下管道最大等效应力与剩余强度的变化规律,并对其剩余寿命进行预测。结果表明:远离缺陷部位,等效应力分布均匀,最大等效应力发生在缺陷边缘区域;两种双点腐蚀缺陷等效应力均随缺陷深度的增大而增大,随缺陷间距的增大先减小而后保持不变,出现临界值;椭圆形双点腐蚀缺陷危害性大。所得结论可为管道的检修与替换提供可靠的数据支撑。 相似文献
14.
由于我国西南地区山脉连绵,存在大量高落差埋地输气管道,并且随着服役年限延长也会出现不同程度的腐蚀。同时山区高落差埋地含腐蚀管道在地震作用下受力复杂,而目前难以通过实地监测或者在试验中完成其地震响应研究。为此,基于西南地区某一典型高落差埋地X80管道的实际工况,建立了地震作用下高落差埋地含腐蚀X80管道有限元模型,探讨了腐蚀深度、腐蚀宽度和腐蚀长度对高落差埋地含腐蚀管道地震动力响应的影响规律。研究结果表明:在地震波和内压的加载下,腐蚀深度的增加会使最大等效应力呈线性向上增加趋势,而内压和敷设角度会影响管道发生腐蚀后的初始应力值;最大等效应力随腐蚀长度的增大而增大,当敷设角度为60°时,腐蚀长度超过0.3D(D为管道外径)后,敷设角度对管道最大等效应力的影响超过了腐蚀长度;最大等效应力随腐蚀宽度的增大而减小;通过参数敏感性分析得出,腐蚀深度对地震作用下高落差埋地管道最大等效应力影响最大(占比为0.71),其次为腐蚀长度(占比为0.27),腐蚀宽度影响最小(占比为0.02)。在天然气管道设计和施工阶段,应避免敷设角度大于45°,对于在役管段出现腐蚀处应重点监测其腐蚀深度。所得结论可为山区长输... 相似文献
15.
《石油化工腐蚀与防护》2017,(4)
某常减压蒸馏装置减压炉3路出口第2个弯头后直管经超声测厚发现腐蚀减薄严重。以此管道为样本,用有限元软件模拟了含双体积型腐蚀缺陷管道的应力状态,研究了平底方形、椭圆底方形两种体积型腐蚀缺陷及组合缺陷之间的距离对管道最大等效应力的影响规律。结果表明:当双平底缺陷、双椭圆底缺陷和组合缺陷之间的距离分别大于等于500,160和300 mm时,两缺陷互不干涉,可分开评定其对管道剩余强度的影响。 相似文献
16.
目前国内同时考虑多因素环境下对抽油杆CO2腐蚀影响的研究较少。为此,基于COMSOL多物理场耦合分析的方法和任意拉格朗日-欧拉法展开模拟含缺陷抽油杆CO2腐蚀规律研究,并结合某油田SN区块抽油杆腐蚀情况进行了分析。研究结果表明:随着温度的升高,抽油杆CO2腐蚀速率先增大后减小;抽油杆腐蚀速率随CO2分压的增大而增大,当其分压增大到0.5 MPa后,腐蚀速率增长放缓,最后趋于平稳;腐蚀速率随pH值的增大而减小,当温度为80℃时,抽油杆腐蚀速率降低90.7%;当抽油杆缺陷长度为1 mm时,腐蚀电位幅度变化最大,此时的腐蚀深度最深(1.3 mm)。研究结论可为含缺陷抽油杆在电化学腐蚀环境下使用寿命预测和安全评价提供理论支撑。 相似文献
17.
18.
19.
对埋地输油管线全线腐蚀检测数据分析表明,管线不同区段腐蚀程度差别很大,在预测其腐蚀管道剩余寿命时亦应采用分段预测的原则进行.最普遍的预测腐蚀增长率的方法就是对比两组近些年内的检测数据.全寿命腐蚀增长率预测适用于两次检测间隔时间较短的情况;半寿命腐蚀增长率预测适用于两次检测间隔时间较长或只有一次且距投产之日起时间较长的情况.依据腐蚀增长速率可预测腐蚀缺陷的未来发展情况,从而判定出计划修复时间和再检测时间. 相似文献
20.
穿越河流管道容易发生裸露悬空,管道的环焊缝是薄弱环节,极易发生断裂失效。为了保障穿越河流天然气长输管道环焊缝安全性,以某穿越河流输气管道悬跨段为研究对象,分析悬跨段管道所受复杂应力情况,建立管道局部悬跨段及管土相互作用的简化力学模型;基于非线性有限元法,创新性地使用连接器建立管土非线性耦合单元,建立穿越河流含裂纹缺陷管道环焊缝模型,得到悬跨管道的应力、应变等分布情况和以J积分为表征的裂纹驱动力,并结合BS 7910-2019《金属结构中缺陷可接受性评估方法指南》验证其准确性;在此基础上,考虑管道屈服强度、焊缝匹配系数、内压及土壤承载力参数,采用单因素敏感性分析法,识别各参数条件对管道J积分的影响规律,得到影响管道环焊缝裂纹起裂的关键因素。研究结果可为复杂应力作用下穿越河流管道环焊缝安全运行提供参考。 相似文献