首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李凡 《计算机应用研究》2021,38(2):549-552,558
目前针对恶意Android应用的静态检测方法大多基于对病毒哈希值的分析与匹配,无法迅速检测出新型恶意Android应用及其变种,为了降低现有静态检测的漏报率,提高对新型恶意应用的检测速度,提出一种通过深度网络融合模型实现的恶意Android应用检测方法。首先提取反编译得到的Android应用核心代码中的静态特征,随后进行代码向量化处理,最后使用深度学习网络进行分类判别。该方法实现了对恶意应用高准确度的识别,经过与现存方法的对比分析,验证了该方法在恶意代码检测中的优越性。  相似文献   

2.
Anomaly detection is a key step in ensuring the security and reliability of large-scale distributed systems. Analyzing system logs through artificial intelligence methods can quickly detect anomalies and thus help maintenance personnel to maintain system security. Most of the current works only focus on the temporal or spatial features of distributed system logs, and they cannot sufficiently extract the global features of distributed system logs to achieve a good correct rate of anomaly detection. To further address the shortcomings of existing methods, this paper proposes a deep learning model with global spatiotemporal features to detect the presence of anomalies in distributed system logs. First, we extract semi-structured log events from log templates and model them as natural language. In addition, we focus on the temporal characteristics of logs using the bidirectional long short-term memory network and the spatial invocation characteristics of logs using the Transformer. Extensive experimental evaluations show the advantages of our proposed model for distributed system log anomaly detection tasks. The optimal F1-Score on three open-source datasets and our own collected distributed system datasets reach 98.04%, 94.34%, 88.16%, and 97.40%, respectively.  相似文献   

3.
水果分级与表面缺陷检测研究   总被引:3,自引:0,他引:3  
水果分级与表面缺陷检测,是水果自动分级检测系统的基础.提出表征水果类别的"大小-评价测光值"空间模型,与表征水果表面缺陷程度的"数量-程度"空间模型.将水果的特征映射到这两个特征空间,然后进行模式分类.实验结果表明,提出的两个特征空间能有效的表征水果的特征,准确地划分水果的类别与表面缺陷程度.  相似文献   

4.
Multimedia Tools and Applications - Tuberculosis (TB) is an infectious disease that mainly affects the lung region. Its initial screening is mostly performed using chest radiograph, which is also...  相似文献   

5.

The visual sleep stages scoring by human experts is the current gold standard for sleep analysis. However, this method is tedious, time-consuming, prone to human errors, and unable to detect microstructure of sleep such as cyclic alternating pattern (CAP) which is an important diagnostic factor for the detection of sleep disorders such as insomnia and obstructive sleep apnea (OSA). The CAP is only observed as subtle changes in the electroencephalogram (EEG) signals during non-rapid eye movement (NREM) sleep, making it very difficult for human experts to discern. Hence, it is important to have an automated system developed using artificial intelligence for accurate and robust detection of CAP and sleep stages classification. In this study, a deep learning model based on 1-dimensional convolutional neural network (1D-CNN) is proposed for CAP detection and homogenous 3-class sleep stages classification, namely wakefulness (W), rapid eye movement (REM) and NREM sleep. The proposed model is developed using standardized EEG recordings. Our developed CNN network achieved good model performance for 3-class sleep stages classification with a classification accuracy of 90.46%. Our proposed model also yielded a classification accuracy of 73.64% using balanced CAP dataset, and sensitivity of 92.06% with unbalanced CAP dataset. Our proposed model correctly identified majority of A-phases which comprised of only 12.6% in the unbalanced dataset. The performance of the developed prototype is ready to be tested with more data before clinical application.

  相似文献   

6.
Skin cancer becomes a deadly disease that affect people of all ages globally. The availability of various types of benign and malignant melanoma makes the skin lesion diagnostic process difficult. Since the visual inspection of skin cancer is costlier and lengthy process, it is needed to design automatic diagnosis model to classify skin lesions accurately and promptly. Computer-aided diagnosis models can be employed to identify the presence of skin lesions using dermoscopic images. The automatic identification of skin lesions can assist the doctors and enable the detection process at an efficient and faster rate. With this motivation, this article presents an automated skin lesion detection and classification using fused deep convolutional neural network (ASDC-FDCNN) on dermoscopic images. The ASDC-FDCNN technique aims to identify the existence of skin lesions from dermoscopic images. The ASDC-FDCNN model involves the design of two deep learning models namely VGG19 and ResNet152 models. Besides, the fusion based feature extraction process is performed to derive feature vectors. In addition, the DCNN technique was employed as classifier for identifying the presence or absence of skin lesions. The performance validation of the ASDC-FDCNN technique takes place utilizing benchmark skin lesion dataset. A comparative results analysis reported the better performance of the ASDC-FDCNN model over the recent technique with respect to various measures.  相似文献   

7.
8.
Template matching methods have been widely utilized to detect fabric defects in textile quality control. In this paper, a novel approach is proposed to design a flexible classifier for distinguishing flaws from twill fabrics by statistically learning from the normal fabric texture. Statistical information of natural and normal texture of the fabric can be extracted via collecting and analyzing the gray image. On the basis of this, both judging threshold and template are acquired and updated adaptively in real-time according to the real textures of fabric, which promises more flexibility and universality. The algorithms are experimented with images of fault free and faulty textile samples.  相似文献   

9.
刀具在生产的过程中,由于人员、机器、环境等多方面原因,刀具的表面会出现各种缺陷,如划痕、碰撞凹坑、涂层剥落和边缘豁口;这些缺陷会严重影响刀具的质量和外观,对于刀具的缺陷检测,目前主要采用人工目检的方式,人工检测方法效率和准确率都比较低;为解决上述问题,提出一种刀具缺陷的自动化检测及分类算法;针对刀具图像的预处理,提出了一种基于双边滤波的降噪方法和基于差分的对比度增强算法;对于刀具的缺陷检测任务,提出了基于图像差分的缺陷检测算法;对于缺陷的分类任务,提出了一种基于SVM的分类算法,即通过提取缺陷区域的形状、纹理等特征来训练SVM分类器;最后对提出的缺陷检测及分类算法进行实验,结果表明算法的缺陷检出率达97.2%,分类准确率可达94.3%;算法能够很好地满足工业需求,可以替代人工实现刀具缺陷的自动化和高效率检测。  相似文献   

10.

Each year, a huge number of malicious programs are released which causes malware detection to become a critical task in computer security. Antiviruses use various methods for detecting malware, such as signature-based and heuristic-based techniques. Polymorphic and metamorphic malwares employ obfuscation techniques to bypass traditional detection methods used by antiviruses. Recently, the number of these malware has increased dramatically. Most of the previously proposed methods to detect malware are based on high-level features such as opcodes, function calls or program’s control flow graph (CFG). Due to new obfuscation techniques, extracting high-level features is tough, fallible and time-consuming; hence approaches using program’s bytes are quicker and more accurate. In this paper, a novel byte-level method for detecting malware by audio signal processing techniques is presented. In our proposed method, program’s bytes are converted to a meaningful audio signal, then Music Information Retrieval (MIR) techniques are employed to construct a machine learning music classification model from audio signals to detect new and unseen instances. Experiments evaluate the influence of different strategies converting bytes to audio signals and the effectiveness of the method.

  相似文献   

11.

A lot of malicious applications appears every day, threatening numerous users. Therefore, a surge of studies have been conducted to protect users from newly emerging malware by using machine learning algorithms. Albeit existing machine or deep learning-based Android malware detection approaches achieve high accuracy by using a combination of multiple features, it is not possible to employ them on our mobile devices due to the high cost for using them. In this paper, we propose MAPAS, a malware detection system, that achieves high accuracy and adaptable usages of computing resources. MAPAS analyzes behaviors of malicious applications based on API call graphs of them by using convolution neural networks (CNN). However, MAPAS does not use a classifier model generated by CNN, it only utilizes CNN for discovering common features of API call graphs of malware. For efficiently detecting malware, MAPAS employs a lightweight classifier that calculates a similarity between API call graphs used for malicious activities and API call graphs of applications that are going to be classified. To demonstrate the effectiveness and efficiency of MAPAS, we implement a prototype and thoroughly evaluate it. And, we compare MAPAS with a state-of-the-art Android malware detection approach, MaMaDroid. Our evaluation results demonstrate that MAPAS can classify applications 145.8% faster and uses memory around ten times lower than MaMaDroid. Also, MAPAS achieves higher accuracy (91.27%) than MaMaDroid (84.99%) for detecting unknown malware. In addition, MAPAS can generally detect any type of malware with high accuracy.

  相似文献   

12.
Cellular processes are governed by macromolecular complexes inside the cell. Study of the native structures of macromolecular complexes has been extremely difficult due to lack of data. With recent breakthroughs in Cellular Electron Cryo-Tomography (CECT) 3D imaging technology, it is now possible for researchers to gain accesses to fully study and understand the macromolecular structures single cells. However, systematic recovery of macromolecular structures from CECT is very difficult due to high degree of structural complexity and practical imaging limitations. Specifically, we proposed a deep learning-based image classification approach for large-scale systematic macromolecular structure separation from CECT data. However, our previous work was only a very initial step toward exploration of the full potential of deep learning-based macromolecule separation. In this paper, we focus on improving classification performance by proposing three newly designed individual CNN models: an extended version of (Deep Small Receptive Field) DSRF3D, donated as DSRF3D-v2, a 3D residual block-based neural network, named as RB3D, and a convolutional 3D (C3D)-based model, CB3D. We compare them with our previously developed model (DSRF3D) on 12 datasets with different SNRs and tilt angle ranges. The experiments show that our new models achieved significantly higher classification accuracies. The accuracies are not only higher than 0.9 on normal datasets, but also demonstrate potentials to operate on datasets with high levels of noises and missing wedge effects presented.  相似文献   

13.
Vision-based defect classification is an important technology to control the quality of product in manufacturing system. As it is very hard to obtain enough labeled samples for model training in the real-world production, the semi-supervised learning which learns from both labeled and unlabeled samples is more suitable for this task. However, the intra-class variations and the inter-class similarities of surface defect, named as the poor class separation, may cause the semi-supervised methods to perform poorly with small labeled samples. While graph-based methods, such as graph convolution network (GCN), can solve the problem well. Therefore, this paper proposes a new graph-based semi-supervised method, named as multiple micrographs graph convolutional network (MMGCN), for surface defect classification. Firstly, MMGCN performs graph convolution by constructing multiple micrographs instead of a large graph, and labels unlabeled samples by propagating label information from labeled samples to unlabeled samples in the micrographs to obtain multiple labels. Weighting the labels can obtain the final label, which can solve the limitations of computation complexity and practicality of original GCN. Secondly, MMGCN divides unlabeled dataset into multiple batches and sets an accuracy threshold. When the model accuracy reaches the threshold, the unlabeled datasets are labeled in batches. A famous case has been used to evaluate the performance of the proposed method. The experimental results demonstrate that the proposed MMGCN can achieve better computation complexity and practicality than GCN. And for accuracy, MMGCN can also obtain the best performance and the best class separation in the comparison with other semi-supervised surface defect classification methods.  相似文献   

14.
目的 糖尿病性视网膜病变(DR)是目前比较严重的一种致盲眼病,因此,对糖尿病性视网膜病理图像的自动分类具有重要的临床应用价值。基于人工分类视网膜图像的方法存在判别性特征提取困难、分类性能差、耗时费力且很难得到客观统一的医疗诊断等问题,为此,提出一种基于卷积神经网络和分类器的视网膜病理图像自动分类系统。方法 首先,结合现有的视网膜图像的特点,对图像进行去噪、数据扩增、归一化等预处理操作;其次,在AlexNet网络的基础上,在网络的每一个卷积层和全连接层前引入一个批归一化层,得到一个网络层次更复杂的深度卷积神经网络BNnet。BNnet网络用于视网膜图像的特征提取网络,对其训练时采用迁移学习的策略利用ILSVRC2012数据集对BNnet网络进行预训练,再将训练得到的模型迁移到视网膜图像上再学习,提取用于视网膜分类的深度特征;最后,将提取的特征输入一个由全连接层组成的深度分类器将视网膜图像分为正常的视网膜图像、轻微病变的视网膜图像、中度病变的视网膜图像等5类。结果 实验结果表明,本文方法的分类准确率可达0.93,优于传统的直接训练方法,且具有较好的鲁棒性和泛化性。结论 本文提出的视网膜病理图像分类框架有效地避免了人工特征提取和图像分类的局限性,同时也解决了样本数据不足而导致的过拟合问题。  相似文献   

15.
Neural Computing and Applications - Semantic mapping is still challenging for household collaborative robots. Deep learning models have proved their capability to extract semantics from the scene...  相似文献   

16.
Hao  Ruiyang  Lu  Bingyu  Cheng  Ying  Li  Xiu  Huang  Biqing 《Journal of Intelligent Manufacturing》2021,32(7):1833-1843
Journal of Intelligent Manufacturing - With the advance in Industry 4.0, smart industrial monitoring has been proposed to timely discover faults and defects in industrial processes. Steel is widely...  相似文献   

17.
Software Quality Journal - Code smells are characteristics of the software that indicates a code or design problem which can make software hard to understand, evolve, and maintain. There are...  相似文献   

18.
Proliferative diabetic retinopathy (PDR) is a condition that carries a high risk of severe visual impairment. The hallmark of PDR is neovascularisation, the growth of abnormal new vessels. This paper describes an automated method for the detection of new vessels in retinal images. Two vessel segmentation approaches are applied, using the standard line operator and a novel modified line operator. The latter is designed to reduce false responses to non-vessel edges. Both generated binary vessel maps hold vital information which must be processed separately. This is achieved with a dual classification system. Local morphology features are measured from each binary vessel map to produce two separate feature sets. Independent classification is performed for each feature set using a support vector machine (SVM) classifier. The system then combines these individual classification outcomes to produce a final decision. Sensitivity and specificity results using a dataset of 60 images are 0.862 and 0.944 respectively on a per patch basis and 1.00 and 0.90 respectively on a per image basis.  相似文献   

19.
The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively.  相似文献   

20.
A method for automated detection of breast tumors in mammograms is presented. The method uses the asymmetry principle: Strong structural asymmetries between corresponding regions in the left and right breast are taken as evidence for the possible presence of a tumor in that region. Asymmetry detection is achieved in two steps. First, mammograms are aligned, compensating for possible differences in size and shape between the two breasts. Second, asymmetry between corresponding positions is determined using a combination of several asymmetry measures, each responding to different types of asymmetries. Results obtained with a set of mammograms indicate that this method can improve the sensitivity and reliability of systems for automated detection of breast tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号