首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
精确的短期风电功率预测能有效提高电网供电可靠性.为降低风电数据中隐含噪声对预测结果的影响,采用奇异谱分析 (SingularSpectrum Analysis,SSA)将原始数据分解并重构为趋势、周期和高频噪声三个子序列,作为预测模型的输入.针对传统循环网络局限于时间相关性的前向提取,提出卷积双向门控循环单元网络 (Convolution NeuralNetworkGBidirectionalGatedRecurrentUnit,CNNGBiGRU)预测模型.前者提取重构子序列间特征的耦合关系,后者挖掘数据的双向时间相关性,以提高预测精度.为了研究该模型的预测性能,选取了其他模型进行对比,试验结果表明SSAGCNNGBiGRU 模型比其他模型更具有优越的预测性能。  相似文献   

2.
风电功率预测对电力系统的经济调度和运行至关重要。为了减少集合经验模式分解产生的高频本征模函数IMF1对预测结果造成的影响,使用小波包分解进一步将IMF1子序列分解成若干子系列。针对传统机器学习无法处理时间序列间关联信息和时间相关性的缺陷,提出了级联式卷积神经网络-门控循环单元预测模型,提取风电功率子序列、风速子序列和风向之间的耦合关系的隐含特征,并进一步挖掘各个时间序列之间的时间相关特征。实验结果表明,所提出的预测模型优于其他预测模型,并验证了所提预测模型的有效性。  相似文献   

3.
基于深度门控循环单元神经网络的短期风功率预测模型   总被引:1,自引:0,他引:1  
随着新能源的不断发展,大量大容量风电机组并入电网运行,给电网的安全可靠运行以及风力发电的可持续发展都提出了新的挑战。提出一种风功率预测模型,该模型以风电场风功率历史数据以及风速、风向等数值天气预报数据作为输入对风功率进行预测。考虑到风功率预测中输入数据的波动性和不确定性,在传统门控循环单元(GRU)神经网络的基础上融合卷积神经网络(CNN),以提高模型对原始数据的特征提取和降维能力,并引入dropout技术减少模型中的过拟合现象。工程实例分析表明,所提模型在预测准确度和运算速度方面均优于长短记忆神经网络模型。  相似文献   

4.
风电功率概率预测是分析未来风电功率不确定性的有效方法之一。为提高风电功率概率预测精度,文中提出基于变分模态分解(VMD)与改进门控循环单元分位数回归(QRGRU)的超短期风电功率概率预测方法。首先,采用VMD将原始风电功率序列分解成不同特征的模态函数;然后,对每个模态函数分别建立基于QRGRU的概率预测模型,并将变量间的网络结构约束作为目标函数的惩罚项,改进QRGRU权重在迭代修正过程中的平稳性;最后,在不同分位数条件下叠加各个模态函数预测值,并采用非参数核密度估计方法得到未来风电功率的概率密度函数。结合某风电场实测数据开展具体算例分析,结果表明所提方法能够兼顾区间覆盖率,减少区间宽度,在不同预测步长中均能表现较好的预测效果。  相似文献   

5.
精准的风电功率预测是电力的合理调度的重要依据和电力系统的平稳运行的重要保证。本文提出了组合残差网络和门控循环单元的风电功率预测模型。该模型使用残差网络提取风电数据的多维非线性特征,之后将特征向量时序化并作为门控循环单元网络的输入。残差网络将前面的时序特征与当前时刻的特征相结合,可以取得比普通卷积网络更好的非线性时序特征。门控循环单元网络比传统的长短期记忆网络有更简单的结构和更高的预测精度。本文通过实验的方法优化了所提出的模型中残差块的个数和门控单元的个数。在法国La Haute Borne风电场的风电数据上的仿真实验表明,本文提出的方法具有令人满意的预测精度。  相似文献   

6.
较高的随机波动性使得风电功率的预测十分困难。为改善风电功率预测的效果,建立了一种基于变分模态分解(variational mode decomposition,VMD)、改进局部自注意力机制(Improved Local Self-Attention,ILSA)和门控循环单元网络(gated recurrent unit,GRU)的短期风电功率预测方法。使用VMD分解将原始风电功率序列分解为中心频率不一的子模态;对各子模态的中心频率分别建立具有不同高斯偏置优化窗口大小的ILSA模型,并改进其注意力分数公式以更有效地提取信息;采用GRU模型进行风电功率预测,并对各预测序列进行重组,得到最终的预测结果。实验结果表明,相比于各传统模型,所提改进方法能有效提高风电功率预测精度,且对于低频分量有更高的拟合度。  相似文献   

7.
高精度的风电功率预测对风电的并网运营至关重要.为提取风电功率输入序列隐含的时间信息,建立以门控循环单元为基础的预测模型;并在模型输入侧引入时序注意力机制,通过与输入进行加权的方式提高模型对关键历史时间节点的敏感性.为加速模型收敛,在训练的早期利用动态混沌纵横交叉算法优化预测模型的权值和阈值;同时,通过构造多指标共同作用...  相似文献   

8.
风能间歇性和波动性的特点给电网的平稳运行造成了很大的挑战,导致电网企业限制风电并网,造成弃风行为。因此,实时有效地预测风力发电情况对风电开发和电网的平稳运行至关重要。在分析当前多种预测方法后,提出了基于核主成分分析K均值聚类-门控循环单元(KPCA-K-means-GRU)的短期风电功率预测模型。多维数据能够较好地还原实际物理状态,但过高维度的数据会带来维数灾难。因此,利用非线性的KPCA在保留高维数据信息的同时降低数据维度。随后借鉴负荷预测相似日思路,将降维后的数据通过K-means进行无监督聚类以建立不同的预测模型来提高预测精度。最后分别训练不同类别数据的GRU神经网络参数,进行分类预测以获得更合适的网络模型。  相似文献   

9.
提出一种基于LSTM-Attention网络的短期风电功率预测方法。首先,使用LSTM网络对数值天气预测(NWP)数据的特征信息进行提取,同时采用注意力机制有效分析了模型输入与输出的相关性,从而获取了更多重要时间的整体特征;其次,使用卷积神经网络(CNN)提取NWP数据的局部特征,并引入压缩和奖惩网络(SE)模块学习特征权重,利用特征重新标定方式提高网络表示能力;最后,将局部特征和整体特征进行特征融合,通过分类器输出分类结果。利用NOAA提供的美国加利福尼亚州某风电场的数据进行案例分析,证明了所提方法的有效性。试验结果表明,与BP神经网络、自回归积分滑动平均模型(ARIMA)模型和LSTM模型相比,LSTM-Attention模型具有更高的预测精度,证明了该方法的有效性。  相似文献   

10.
风电功率的准确预测可以有效地减少并网波动。现有的风电功率预测模型存在输入特征过多、超参数选择难、时序过长易丢失重要信息等问题。为此,提出了一种麻雀搜索算法(SSA)优化双向长短时记忆(BiLSTM)加注意力机制(AM)的短期风电功率融合预测模型。首先,SSA对BiLSTM神经网络的节点数、学习率和训练次数等超参数进行寻优,确认最佳参数;然后,引入AM对BiLSTM的输入特征分配不同权重,强化关键特征;最后,应用所提模型对新疆210 MW风电场的风电功率进行预测,并与其他模型的预测结果对比。结果表明,SSA-BiLSTM-AM预测模型的均方根误差(RMSE)为5.411 4、平均绝对误差(MAE)为3.674 9,显著优于其他模型的预测精度,证明了SSA优化算法和AM能够有效提高风电机组的短期功率预测精度。  相似文献   

11.
电网的可靠运行及持续发展离不开对短期电力负荷的高效、准确预测。针对表征电网负荷变化的历史数据具有复杂性和时序性等特点,且现有的机器学习预测方法仍存在依据经验选取关键参数的不足,利用卷积神经网络(CNN)提取表征负荷变化的多维特征向量,构造成时间序列输入到门控循环单元(GRU),并使用改进麻雀搜索算法(ISSA)对GRU网络中的超参数进行迭代寻优。预测试验样本来自云南某地区的负荷数据,所提方法的预测精度达到了98.624%,与循环神经网络(RNN)、GRU和长短期记忆(LSTM)等神经网络预测方法进行对比,算例表明,所提方法克服了依据经验选取关键参数难题的同时具有更高的预测精度。  相似文献   

12.
为充分挖掘蕴含在大量采集数据中的有效信息,提高短期负荷预测精度,提出一种基于卷积神经网络(CNN)和双向门控循环单元(BiGRU)、全连接神经网络(NN)的混合模型的短期负荷预测方法,将海量的历史负荷数据、气象信息、日期信息按时间滑动窗口构造特征图作为输入,先利用CNN提取特征图中的有效信息,构造特征向量,再将特征向量...  相似文献   

13.
基于GRU-NN模型的短期负荷预测方法   总被引:3,自引:0,他引:3  
目前基于统计分析和机器学习的预测方法难以同时兼顾负荷数据的时序性和非线性特点。文中提出了一种基于GRU-NN模型的短期电力负荷预测方法。该方法基于深度学习思想处理不同类型的负荷影响因素,引入门控循环单元(GRU)网络处理具有时序性特点的历史负荷序列,建模学习负荷数据内部动态变化规律,其输出结果与其他外部影响因素(天气、日类型等)融合为新的输入特征,使用深度神经网络进行处理,整体分析特征与负荷变化的内在联系,最后完成负荷预测。以美国某公共事业部门提供的公开数据集和中国某地区的负荷数据作为实际算例,该方法预测精度分别达到了97.30%和97.12%,并与长短期记忆神经网络、多层感知机以及GRU神经网络方法进行对比,实验结果表明所提方法具有更高的预测精度和更快的预测速度。  相似文献   

14.
针对输入数据特征多时负荷预测模型精度提升难的问题,文章提出一种并行多模型融合的混合神经网络超短期负荷预测方法。将卷积神经网络(convolutional neural network,CNN)与门控循环单元神经网络(gated recurrent unit neural network,GRU-NN)并行,分别提取局部特征与时序特征,将2个网络结构的输出拼接并输入深度神经网络(deep neural network,DNN),由DNN进行超短期负荷预测。最后应用负荷与温度数据进行预测实验,结果表明相比于GRUNN网络结构、长短期记忆(long short term memory,LSTM)网络结构、串行CNN-LSTM网络结构与串行CNN-GRU网络结构,所提方法具有更好的预测性能。  相似文献   

15.
在风机呈不规则排列的风电场中,不同空间位置下的众多风机分布构成点云,而不是规则化的矩形网格.点云是不规则且无序的,可以代表任意风电场中多风机的地理位置分布,但是不能构成卷积神经网络(CNN)高度规则的网格输入,卷积算子难以学习其空间局部相关性.若直接将不规则点云映射为网格排列进行常规卷积,会失去点云原始的空间信息.为此,采用点CNN进行空间相关性提取,再利用简单循环单元进行时间相关性提取,从而获取点云数据的时空相关性.同时,设计点CNN时融入了多尺度下的空间特征提取与汇集.最后,结合实际以点云分布的多风机仿真结果验证了所提预测模型的有效性.  相似文献   

16.
为提高负荷预测精度,考虑了历史负荷本身内在规律及外部影响因素,提出一种基于变分模态分解(variational modal decomposition,VMD)–卷积神经网络(convolutional neural networks,CNN)–双向门控循环单元(bi-directional gated recurrent unit,BIGRU)混合网络的短期负荷预测方法,改善了训练时长和预测效果。通过仿真分析验证了所提方法的有效性,且该方法与其他模型相比有更高的负荷预测精度和更强的鲁棒性,能够提高电力系统短期负荷预测的精确度。  相似文献   

17.
基于降噪时序深度学习网络的风电功率短期预测方法   总被引:3,自引:0,他引:3  
利用风电场历史功率数据预测未来一段时间内的风功率,对保障电网安全稳定运行具有重要的意义。本文提出一种基于奇异谱分析SSA(singular spectrum analysis)和长短时记忆LSTM(long-short term memory net⁃work)网络的时序特征预测框架用于短期风功率的预测。首先通过SSA对历史风功率原始数据进行降噪处理,然后经过数据转换之后,以LSTM网络为基础进行预测模型的训练,最后通过某风电场提供的两个风机的历史功率数据进行验证。实验结果表明,奇异谱分析对风电场的历史数据具有良好的降噪性,SSA+LSTM模型在测试数据上取得了较好的预测性能,能够有效进行短期风功率的预测。  相似文献   

18.
基于动态神经网络的风电场输出功率预测   总被引:5,自引:0,他引:5  
随着风电的大规模发展,准确预测风电场输出功率对于风电场的选址、大规模并网及运行具有重要的作用。文中提出了局部反馈时延神经网络和全局反馈时延神经网络2种动态神经网络预测模型,以适应风功率的时间序列特性,并与静态神经网络预测模型进行了比较。以国内北方某风电场的风功率预测为例,结合气象预报数据进行提前24h的风电输出功率预测,仿真结果表明,动态神经网络在预测具有时间序列特性的风功率时效果优于静态神经网络。  相似文献   

19.
为提高风电功率爬坡预测的准确性,提出了一种基于卷积神经网络、长短期记忆网络和注意力机制的风电功率爬坡预测方法。首先,针对风电功率爬坡发生次数少、特征复杂、预测模型难以对小样本爬坡事件有效学习的问题,使用卷积神经网络对风电功率序列进行特征提取。然后,使用长短期记忆网络建立预测模型,解决风电功率的长时依赖问题,并在模型中加入注意力机制对长短期记忆网络单元的输出进行加权,从而加强风电特征的学习,提高爬坡预测准确度。仿真验证表明,模型对风电功率爬坡预测有较高的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号