首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline Pr1−xZrxO2−δ (0 ≤ x ≤ 1) and Pr1−xyPdyZrxO2−δ (x = 0.50, y = 0.02) solid solutions have been synthesized by a single step solution combustion method. The whole range of solid solution compositions crystallize in cubic fluorite structure. The lattice parameter ‘a’ linearly varied up to x = 1.0. Oxygen-storage capacity (OSC) and redox properties of Pr1−xZrxO2−δ (0.0 ≤ x ≤ 0.8) solid solutions have been investigated by temperature-programmed reduction (TPR) and are compared with those of Ce1−xZrxO2. Pr1−xZrxO2−δ exhibited H2 uptake and CO oxidation at a lower temperature than Ce1−xZrxO2. Small amount of Pd ion (y = 0.02) substitution was found to bring down the temperature of oxygen release-storage significantly.  相似文献   

2.
Electrical conduction properties of complex perovskite-type oxides in the (La0.5Sr0.5)(Mg0.5+yNb0.5−y)O3−δ (y = 0.02-0.06) series at intermediate-high temperatures were investigated; introduction of protons by hydration of oxide-ion vacancies was expected by increasing the Mg/Nb ratio from unity. The conductivity depended on y and a maximum conductivity was obtained at y = 0.04: σ = 4.9 × 10−6 S cm−1 at 400 °C in wet H2 atmospheres. From electromotive force measurements of hydrogen and water vapor concentration cells, electrical conduction in wet H2 atmospheres can be attributed to ionic conduction, and proton conduction is dominant below 700 °C. Unlike other perovskite-type proton conductors, (La0.5Sr0.5)(Mg0.54Nb0.46)O3−δ was stable in CO2 atmospheres even in the low-intermediate temperature region due to dilution of reactive strontium by lanthanum.  相似文献   

3.
Magnetic perovskite-type SrTi0.1Fe0.9O3−δ was synthesized by stearic acid gel combustion method. The obtained powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), vibrating sample magnetometer (VSM) and UV-Visible absorption spectrum techniques. Mean valence of Fe ion and the concentration of oxygen vacancies in SrTi0.1Fe0.9O3−δ were measured by iodometric method. The magnetic properties of the SrTi0.1Fe0.9O3−δ were measured, and the SrTi0.1Fe0.9O3−δ was also evaluated for its photocatalytic activity towards the degradation of methyl orange (MO) under the sunlight irradiation. The experimental results show that the SrTi0.1Fe0.9O3−δ is the photocatalyst possessing of magnetic property and visible-light activity, i.e., bifunctional photocatalyst. The SrTi0.1Fe0.9O3−δ is applicable to the magnetic separation process and also shows excellent photocatalytic activity for the degradation of MO. The optimal conditions for photocatalytic degradation were methyl orange concentration of 20 mg L−1 at pH 6.0 with the SrTi0.1Fe0.9O3−δ concentration of 7.29 mg L−1 for 3 h. In addition, the SrTi0.1Fe0.9O3 is reusable and maintain relatively high activity. This study could point out a potential way to develop new and more active magnetic perovskite-type photocatalysts.  相似文献   

4.
The SOFC interconnect materials La0.7Ca0.3Cr1−xO3−δ (x = 0-0.09) were prepared using an auto-ignition process and characterized. XRD analysis indicated that all the samples displayed a pure perovskite phase after sintered at 1400 °C for 4 h. The relative density increased from 67% (x = 0) to 95.8% (x = 0.02) and reached to about 97% (x > 0.02), as sintered at 1400 °C for 4 h. The electrical conductivity in air dramatically increased and then lowered slowly with x values. The sample with 0.03 Cr deficiency got a maximum conductivity of 61.7 S cm−1 at 850 °C in air, which is about three times as high as that of the sample with no Cr deficiency (20.6 S cm−1). The sample with 0.06 Cr deficiency exhibited the highest electrical conductivity of 3.9 S cm−1 at 850 °C in pure H2. The thermal expansion coefficient (TEC) were below 11.8 × 10−6 K−1 for samples of x = 0.02-0.09, that was of well compatibility with other components in SOFCs. Results indicate that the materials with 0.02-0.06 Cr deficiency have high properties and are much suitable for SOFC interconnect.  相似文献   

5.
SrFe0.2−xTi0.8CoxO3−δ (x = 0.05-0.2) were prepared by solid-state reaction method. Phase characterization and lattice parameter evaluation were done by X-ray diffraction studies. Relative concentrations of iron in various oxidation states in these compositions were estimated using Mossbauer spectroscopy. Electrical conductivities of these bulk samples were measured in various ambient and temperatures using AC impedance spectroscopy. SrFe0.15Ti0.8Co0.05O3−δ and SrTi0.8Co0.2O3−δ have been found to exhibit good change in electrical conductivity between 21% O2 and 10 ppm O2 in argon.  相似文献   

6.
The effects of Sr doping on the electrical properties of Ce0.75(Gd0.95−xSrxCa0.05)0.25O2−δ (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05 mol%) electrolytes thick films were investigated. The samples sintered at 1400 °C for 8 h. X-ray diffraction (XRD) showed typical XRD patterns of a cubic fluorite structure, and the ionic conductivity was examined by AC impedance spectroscopy. From the experimental results, it was observed that Ce0.75(Gd0.95−xSrxCa0.05)0.25O2−δ (x = 0.04 mol%) electrolytes thick film have higher conductivity and minimum activation energy at 600 °C. This is explained in terms of the increased in the oxygen vacancy concentration at the grain boundary.  相似文献   

7.
The goal of the presented research was to determine the physicochemical properties of composite samples obtained by mixing BaCe0.85Y0.15O3−δ (BCY15) and Ce0.85Y0.15O2−δ (YDC15) in different ratios, and to achieve a better understanding of how these ratios affect the electrical conductivity, chemical stability and morphology of BCY15–YDC15 composite materials. It was determined that the samples are chemically stable in H2O-containing atmospheres at 600 °C. Furthermore, the porosity of the samples increases with the addition of YDC15 to BCY15. Both the porosity and the BCY15/YDC15 ratio affect the stability of the studied samples. The total activation energy (Et) values of the composite samples, determined via resistance measurements conducted in air at temperatures between 200 and 800 °C, are in the range of 0.590 ± 0.017 eV (Et of BCY15) to 1.132 ± 0.008 eV (Et of YDC15). This indicates that the properties of activation energy for composite materials are additive; the presence of both BCY15 and YDC15 affects the activation energy values. The different morphologies of the samples also influence the conductivity within the respective samples. The electrical conductivity values of the composite samples obtained at temperatures from 200 to 500 °C are in the order of magnitude of 10−7–10−3 S/cm. These values are between those determined for pure BCY15 and YDC15 at the respective measuring temperatures. Consequently, the materials show promise for application as porous central membranes (CM) in dual PCFC–SOFC fuel cells operating in the temperature range 600–700 °C.  相似文献   

8.
A single phase perovskite Y0.08Sr0.92FexTi1−xO3−δ (x = 0.05, 0.1,0 0.20, 0.25, 0.40, and 0.50) was fabricated at 1400 °C in air by a solid state reaction method and its electrical conductivity and electrochemical properties as an anode were investigated as a function of the Fe content. Doping with Y for Sr allowed the SrFexTi1−xO3−δ perovskite to be stable at 800 °C in a reducing atmosphere. At 900 °C, metallic Fe precipitated and the stability of the perovskite phase under a reducing atmosphere decreased as the Fe content increased. The conductivity of Y0.08Sr0.92FexTi1−xO3−δ (x = 0.40) was greater than that of the x = 0.20 sample. The conductivity of Y0.08Sr0.92FexTi1−xO3−δ was found to be 2 × 10−1 Scm−1 at 800 °C in H2. Sintering the Y0.08Sr0.92FexTi1−xO3−δ anode at 1200 °C was found to be optimum to obtain not only good interfacial adhesion, but also a fine grain structure. The Y0.08Sr0.92Fe0.25Ti0.75O3−δ anode exhibited the lowest polarization resistance (0.7 and 1.8 Ωcm2 at 800 and 700 °C).  相似文献   

9.
The standard Gibbs energies of formation of lanthanum orthoferrite (LaFeO3−δ) and hexaferrite (LaFe12O19) were determined using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen gas at ambient pressure as the reference electrode. From emf of the solid-state cell, the Gibbs energy of formation of nonstoichiometric orthoferrite (LaFeO3−δ) is obtained. To derive values for the stoichiometric phase, variation of the oxygen nonstoichiometric parameter δ with oxygen partial pressure was measured using thermogravimetry under controlled gas mixtures. The results obtained for LaFeO3 and LaFe12O19 can be summarized by the following equations, which represent the formation of ternary oxides from their component binary oxides: ½La2O3 + ½Fe2O3 → LaFeO3; ΔG° (LaFeO3) (±450) (J mol−1) = −62920 − 2.12T (K), and ½La2O3 + 9/2Fe2O3 + Fe3O4 → LaFe12O19; ΔG° (LaFe12O19) (±200) (J mol−1) = −103900 + 21.25T (K). These data are discussed critically in comparison with thermodynamic values reported in the literature from a variety of measurements. The values obtained in this study are consistent with calorimetric entropy and enthalpy of formation of the perovskite phase and with some of the Gibbs energy measurements reported in the literature. For the lanthanum hexaferrite (LaFe12O19) there are no prior thermodynamic measurements for comparison.  相似文献   

10.
Scheelite-type Ca1−xSmxMoO4+δ electrolyte powders were prepared by the sol-gel auto-combustion process. The crystal structure of the samples was determined by employing the techniques of X-ray diffraction (XRD). According to the XRD analysis, the formed continuous series of Ca1−xSmxMoO4+δ (0 ≤ x ≤ 0.3) solid solutions had the structure of tetragonal scheelite, and the lattice parameters increased with increasing x in the Sm-substituted system. Results of sinterability and electrochemical testing revealed that the performances of Sm-doped calcium molybdate were superior to that of pure CaMoO4. Ca1−xSmxMoO4+δ ceramics show higher sinterability, and the Ca0.8Sm0.2MoO4+δ sample with 98.7% of the theoretical density were obtained after being sintered at 1250 °C for 4 h. The conductivity increased with increasing samarium content, and a total conductivity 9.54 × 10−3 S cm−1 at 800 °C could be obtained in Ca0.8Sm0.2MoO4+δ sintered at 1250 °C for 4 h.  相似文献   

11.
Barium cerate (BaCeO3) has high proton conductivity but rather poor chemical stability in CO2-containing atmospheres. Barium zirconate (BaZrO3), in contrast, is a rather stable material, but exhibits poor sinterability. In the present work, powders of Y-doped BaCeO3 and BaZrO3 were synthesized via the solid solution reaction method, and dense ceramic membranes with BaCe0.9Y0.1O3 and BaZr0.85Y0.15O3 were prepared by the aerosol deposition method at room temperature. Aerosol deposition method is a technique that enables the fabrication of ceramic films at room temperature with a high deposition rate as well as strong adhesion to the substrate. The powders and aerosol-deposited membranes were characterized by X-ray diffraction, particle size analysis, scanning electron microscopy, and X-ray elemental mapping. The chemical stability of powders and aerosol-deposited membranes with BaCe0.9Y0.1O3 and BaZr0.85Y0.15O3 against water and carbon dioxide has been investigated, and it was found that BaZr0.85Y0.15O3 materials showed a better chemical compatibility.  相似文献   

12.
Perovskites of the composition La1−xSrxFeO3−δ (x = 0.0, 0.1, 0.5, 0.9, 1.0) were prepared by the conventional solid state reaction route. The single phase behaviour was assessed by XRD analysis, the electronic properties were investigated by Fe K-edge X-ray absorption spectroscopy. The work is focused on the valence state of iron and the oxygen vacancies of the perovskites investigated. The XRD measurements revealed that the solid state reaction yields cubic perovskites for x = 1, 0.9, rhombohedral perovskites for x = 0.5, and orthorhombic perovskites for x = 0, 0.1. The X-ray absorption data are discussed in detail with respect to Fe K-edge shift, white-line intensity, pre-edge features, and the EXAFS data. The first peak in the Fourier transform of the Chi × k3 and Chi × k2 functions was simulated for a detailed analysis of scattering contributions from the first oxygen shell to evaluate the Fe-O bond length. The substitution of lanthanum by strontium leads to a corresponding increase of the iron valence state and thus to the formation of the Jahn-Teller Fe4+ ion. This is causing disorder in the first coordination shell and thus an increase of the Debye-Waller factor with increasing x. The Fe-O bond length obtained from XRD and especially from X-ray absorption data are consistent with δ-values close to zero.  相似文献   

13.
In this work, BaCe0.65Zr0.20Y0.15O3−δ powders with a perovskite-type structure were successfully synthesized by a microwave-assisted sol-gel Pechini method (SGP). By comparison, powders having the same nominal stoichiometry were also prepared without the microwave assistance. For the syntheses, nitrates were used as metal precursors, and ethylenediaminetetraacetic acid and ethylene glycol were used as complexing and polymerizing agents, respectively. An extensive structural and morphological investigation by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) has been performed. Moreover, in order to check the phase transitions, simultaneous thermogravimetric and differential thermal analyses were (TG-DTA) performed on gels. With respect to the conventional Pechini method, the microwave-assisted process guaranteed a faster, energy-saving procedure for obtaining single-phase nanopowders of high purity. Moreover, a significant increase in pellet densities was achieved owing to a higher grain coalescence.  相似文献   

14.
This work is focused on nanocrystalline solid oxide fuel cell synthesis and characterization (SOFC) anodes of La0.7Sr0.3Cr0.4Mn0.6O3−δ (perovskite-type) with Nickel. Perovskite-type oxide chemical reactivity, nucleation kinetics and phase composition related with La0.7Sr0.3Cr0.4Mn0.6O3−δ–NiO to La0.7Sr0.3Cr0.4Mn0.6O3−δ–Ni transformation have been analyzed. SOFC anode powders were obtained by sol–gel synthesis, using polyvinyl alcohol as an organic precursor to get a porous cermet electrode after sintering at 1365 °C and oxide reduction by hydrogen at 800 °C/1050 °C for 8 h in a horizontal tubular reactor furnace under 10% H2/N2 atmosphere. Composite powders were compressed into 10-mm diameter discs with 25–75 wt% Ni.  相似文献   

15.
The effect of lowering the A-site stoichiometry of La-Fe-Ni based perovskite solid oxide fuel cell cathodes was investigated with electrochemical impedance spectroscopy on cone-shaped electrodes using a Ce0.9Gd0.1O1.95 electrolyte. It was shown that a lowering of the A-site stoichiometry lowers the amount of Ni in the perovskite phase, as powder XRD revealed that NiO was expelled from the perovskite lattice when the A-site stoichiometry was decreased. NiO inhibit the reduction of oxygen as the activity of a nominally A-site deficient La1−sFe0.4Ni0.6O3−δ perovskite was worse than the activity of the corresponding LaFe0.4+sNi0.6−sO3−δ perovskite without NiO. NiO is therefore poison for the reduction of oxygen at the cathode in a solid oxide fuel cell.  相似文献   

16.
Thin films of solid electrolyte La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) were deposited by RF magnetron sputtering onto porous La0.7Sr0.3Cr0.5Mn0.5O3−δ (LSCM) anode substrates. The effects of substrate temperature, sputtering power density and sputtering Ar gas pressure on the LSGM thin film density, flatness and morphology were systematically investigated. RF sputtering power density of 7.8 W cm−2, substrate temperature of 300 °C and sputtering Ar gas pressure of 5 Pa are identified as the best technical parameters. In addition, a three-electrode half cell configuration was selected to investigate the electrochemical performance of the thin film. The LSGM film deposited at optimum conditions exhibited a lower area specific ohmic resistance of 0.68 Ω cm−2 at 800 °C, showing that the practicability of RF magnetron sputtering method to fabricate LSGM electrolyte thin film on porous LSCM anode substrates.  相似文献   

17.
Substituted Ce1−xNdxO2−δ cerium dioxide thin films are obtained by pulsed laser deposition technique. The films are deposited for various deposition times and at.% Nd, on [100] Si substrates, covered by a thin native SiO2 layer. The evolution of the cell parameters with Nd content shows that a solid solution is formed, up to x = 0.27. The thin films are homogenous in composition at a nanometer scale. The morphology of the grains does not change significantly with Nd content. The microstructure is columnar, with a preferential [100] growth direction. The width of the grains varies from 20 to 30 nm. The conductivities of the thin films are determined from impedance spectroscopy analyses, in the temperature range 200 °C to 600 °C. The experimental data are explained in the frame of the space charge layer model.  相似文献   

18.
The influence of barium content on the structural characteristics, sinterability and electrical conductivity of proton conductor BaxCe0.50Zr0.40Y0.10O3−δ (x = 0.95, 0.97, 1.00, 1.03, 1.05) is investigated. Compositions with barium deficiency show the presence of fluorite precipitate detected by powder X-ray diffraction, whilst pure perovskite phase is present for other samples. Barium deficiency promotes the densification process of the samples. The electrical conductivity of BaxCe0.50Zr0.40Y0.10O3−δ increases with barium content, which is mainly ascribed to the decreased activation energy due to the increasing lattice volume, especially for the case in wet 5% H2/Ar. The present results suggest that it is very important to control the stoichiometry of cations to obtain desirable perovskite type high temperature proton conductors.  相似文献   

19.
Nanocrystalline powders of La10−xGe5.5Al0.5O26±δ (x = 0-0.5) with an average crystallite size of 50 nm were prepared by a freeze-drying precursor method. These powders were used to obtain dense ceramic materials at rather low temperature as 1100-1200 °C for 1 h and to study the transport properties by impedance spectroscopy. The composition with the highest La-content (x = 0) exhibits a second-order phase transition from triclinic () to hexagonal (P63/m) space groups around 750 °C, whereas for x ≥ 0.2 the materials presents hexagonal structure in the whole temperature range studied. The thermal properties of these materials were investigated by high temperature X-ray diffraction (XRD), thermal analysis (TG/DTA) and impedance spectroscopy. These results confirmed the incorporation of water in the germanate-apatite structure. However, the conductivity resulted to be independent on the gas atmosphere used, which seems to indicate that the proton contribution to the overall conductivity is negligible in these materials.  相似文献   

20.
La-doped Ba0.6Sr0.4Co0.6Fe0.4O3−δ perovskites were synthesized and investigated as new cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). The structural characteristics, thermal expansion coefficient (TEC), electrical conductivity and electrochemical properties were characterized by X-ray diffraction (XRD), dilatometry, DC four-terminal method, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The TEC of (Ba0.6Sr0.4)0.9La0.1Co0.4Fe0.6O3−δ (BSLCF) was 14.9 × 10−6 K−1 at 30-800 °C, lower than Ba0.6Sr0.4Co0.4Fe0.6O3−δ (BSCF) of 15.6 × 10−6 K−1. The electrical conductivity of BSCF was improved by La-doping, e.g. a value of 122 S cm−1 for BSLCF vs. 52 S cm−1 for BSCF at 500°C, respectively. In addition, La-doping enhanced the electrochemical activity for oxygen reduction reaction. The polarization resistance of BSLCF was 0.18 Ω cm2 at 700 °C, about a quarter lower than that of BSCF. The improved electrochemical performance of BSLCF should be ascribed to the higher conductivity as well as the improved oxygen adsorption/desorption and oxygen ions diffusion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号