首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, two Tb3+ activated green phosphors: Y2O3:Tb3+ and YBO3:Tb3+ were prepared by hydrothermal method. Photoluminescence properties of both phosphors were studied in details. Both phosphors exhibit similar luminescent characteristics symbolized by the dominant green emission at 545 nm. Concentration quenching occurs at the Tb3+ concentration of 1.60 atomic% and 2.57 atomic% for Y2O3:Tb3+ and YBO3:Tb3+, respectively. Luminescence decay properties were characterized to better understand the mechanism of concentration quenching. Based on the calculation, the concentration quenching in both phosphors was caused by the dipole–dipole interaction between Tb3+ ions.  相似文献   

2.
Single crystal of erbium, ytterbium-codoped yttrium aluminum tetraborate Er,Yb:YAl3(BO3)4(Er,Yb:YAB) has been grown by the flux method. The absorption spectrum in the visible and NIR regions of Er,Yb:YAl3(BO3)4 crystal are measured at room temperature and fluorescence spectrum of Er,Yb:YAl3(BO3)4 crystal are also measured at room temperature, excited by 976 nm laser. Not only the strong NIR emission peaks located at 1548 nm was observed, but also the visible up-conversion luminescence has been found. The specific heat of the Er/Yb:YAB crystal at room temperature is 0.81 J/g °C.  相似文献   

3.
YBO3:Ce3+ blue-emitting phosphors were prepared from boric acid and nitrates of yttrium and cerium(III) by hydrothermal method. An excess amount of boric acid, prolonged aging, high temperature, and a high pH value promote the formation of crystalline YBO3. The higher crystallinity results in the higher photoluminescence (PL) intensity corresponding to the 5d-4f transition of Ce3+ under the irradiation of near-UV light. The PL intensity also depends on the pH value of precursor suspension and the nominal Ce3+ concentration, where the sample prepared at pH = 8 and Ce/(Y + Ce) = 0.25-0.5 at% shows the maximum PL intensity. In addition, the hydrothermally prepared sample shows the characteristic photobleaching behavior under the continuous irradiation of near-UV light. These results suggest that the crystallinity of the host YBO3 crystal and the homogeneity of substituted Ce3+ ions play significant roles in the PL properties.  相似文献   

4.
The phosphors Y0.95−x M x Eu0.05B1−y R y O3:Eu3+ (M = Ca, Sr, Ba, Zn, Al, 0 ≤ x ≤ 0.1; R = Si, P, 0 ≤ y ≤ 0.1) are successfully synthesized by solid-state reaction. All the solid samples are identified as isomorphs. Their luminescent properties are studied under UV and VUV excitation. With the incorporation of metallic or nonmetallic cations, the chromaticity of YBO3:Eu3+ is remarkably improved as well as the luminescent intensity increased. When 10% of Al3+ is doped into YBO3 host lattice, the best ratio of the red emission at 610 nm to the orange one at 591 nm is obtained and the luminescent intensity increased simultaneously. The reason is analyzed, and can be explained by the decrease of the symmetry around Eu3+ site in YBO3 host lattice.  相似文献   

5.
Upconversion (C) light-emitting photonic band gap materials (YBO3: Yb, Er) with inverse opal structure were prepared by a self-assembly technique in combination with a sol-gel method. The effect of the photonic stop-band on the upconversion luminescence of Er3+ ions has been investigated in the YBO3: Yb, Er inverse opals. Significant suppression of the green or red UC emission was detected if the photonic band-gap overlaps with the Er3+ ions emission band. We successfully achieved the color tuning of the UC optical properties of the inverse opal by controlling the structure of the photonic crystal.  相似文献   

6.
Undoped and Fe-doped TiO2 nanopowders with Fe/Ti (atomic ratio) precursor concentration ranging from 7% up to 25% have been prepared by the IR laser pyrolysis technique. A sensitized mixture of TiCl4 and Fe (CO)5 was used as titanium and iron precursor, respectively. Reference undoped titania samples with a major concentration of anatase phase (about 90%) were obtained by the same technique by using very high flows of the oxidizing agent (air). The effects of the iron-dopant concentration on the essential structural properties of the resultant powders such as the phase formation, the crystallinity, the average particle size and distributions were systematically investigated by X-ray diffraction, Raman spectroscopy and transmission electron microscopy. The decrease of the TiO2-anatase crystalline phase, the simultaneous increase of the amorphous phase and the decrease in size of particle mean diameter appear as main effects induced by the Fe-dopant concentration.  相似文献   

7.
X.K. Duan  Y.Z. Jiang 《Vacuum》2011,85(11):1052-1054
Taking elemental antimony and tellurium as source materials, Sb2Te3 nanopowders were prepared by vacuum arc plasma evaporation technique. Microstructure and morphology of the samples were characterized via X-ray diffraction and field emission scanning electron microscope. Compositional analysis was carried out by energy dispersive analysis of X-rays. Lattice constants (a = 4.267 Å, c = 30.469 Å) of Sb2Te3 nanopowders are calculated by (015) and (110) diffraction peaks of X-ray diffraction patterns. Field emission scanning electron microscope surface morphology of the nanopowders shows the irregular polyhedron and rhombohedral structure. Atoms percentage of the nanopowders is calculated by quantitative analysis using energy dispersive analysis of X-rays spectrum. The experimental results show that the percentages of Sb and Te atoms are 41.3% and 58.7% respectively.  相似文献   

8.
Different concentrations of Li-doped YBO3:Eu3+ phosphors have been prepared by the conventional solid state reaction method and were characterized by X-ray diffraction, field emission scanning electron microscopy, photoluminescence excitation and emission measurements. An intense reddish orange emission is observed under UV excitation and the emitted radiation was dominated by an orange peak at 594 nm resulted from the 5D0 → 7F1 transitions of Eu3+ ions. The brightness of the YBO3:Eu3+ phosphor was found greatly improved with Li-doping accompanied by slight improvement in the purity of the color which might be attributed to improvement in crystallinity, grain sizes and creation of oxygen vacancies with Li-doping. The observed results have been discussed in comparison with similar reported works.  相似文献   

9.
In this paper, we investigated the structure and microstructure of In4Te3 nanopowders obtained by mechanically alloying an In75Te25 powder mixture. Structural, chemical, thermal and vibrational studies of the In75Te25 powder mixture were carried out using X-ray diffraction, energy dispersive spectroscopy, transmission electron microscopy, differential scanning calorimetry and Raman spectroscopy. The orthorhombic In4Te3 phase (In3Se4-type) was nucleated in 2 h of synthesis, although non-reacted tetragonal indium (In) was still present at that time. Small amounts of cubic In2O3 phase were observed after 31 h of synthesis. Rietveld analyses allowed the measurement of mean crystallites sizes and phase fraction variations when milling times were increased. These analyses showed that, after 31 h of synthesis, about 65 wt% of In4Te3 phase contained mean crystallite sizes smaller than 27 nm and microstrains greater than 1.5%. The crystallite and interfacial components sizes were determined by high resolution transmission electron microscopy. Differential scanning calorimetry measurements showed the influence of nanometric crystallite sizes on the melting of the In4Te3 and non-reacted In phases. Raman measurements showed that the trigonal Te and α-TeO2 modes, observed for the precursor Te powder, are absent for the sample milled for 31 h. The structural stability of the nanocrystalline phases of the In75Te25 sample milled for 31 h was attested by X-ray diffraction measurements performed twelve months after its production.  相似文献   

10.
In this work, a novel method of producing maghemite (γ-Fe2O3) nanopowders has been developed, which can be performed by the direct thermal decomposition of an Fe–urea complex ([Fe(CON2H4)6](NO3)3) in a single step. The reaction mechanism, particle morphology, and the magnetic properties of the γ-Fe2O3 nanopowders have been studied by using thermogravimetric (TG), differential scanning calorimetry (DSC), fourier transformed infrared (FTIR) spectroscopy, elemental analysis, X-ray powder diffraction (XRD), transmission electron micrograph (TEM) observations, and magnetic measurements. Thermal analyses together with the results of XRD show that the formation of γ-Fe2O3 occurs at ~200 °C through a two-stage thermal decomposition of the [Fe(CON2H4)6](NO3)3 complex. The resulting iron oxide phases (i.e., γ-Fe2O3 and α-Fe2O3) are strongly dependent on the synthesis conditions of the [Fe(CON2H4)6](NO3)3. When the molar ratio of Fe(NO3)3 · 9H2O to CON2H4 that is used for the synthesis of [Fe(CON2H4)6](NO3)3 is 1:6 (i.e., molar ratio in stoichiometry), a mixed phase of γ-Fe2O3 and α-Fe2O3 is formed. When the molar ratio is 1:6.2 (i.e., using an excess CON2H4), on the other hand, a pure γ-Fe2O3 is obtained. Magnetic measurements show that resulting nanopowders exhibit a ferromagnetic characteristic and their maximum saturation magnetization increases from 47.2 to 67.4 emu/g with an increase in the molar ratio of Fe(NO3)3 · 9H2O to CON2H4 from 1:6 to 1:6.2.  相似文献   

11.
In this work, we discuss structural and luminescent properties of Al2O3 nanopowders doped with Yb3+ ions prepared by a novel method, in which organic compounds were used as a solvent and lanthanide organic derivatives, served as a rare-earth ion source. The set of samples differing in activator concentrations and particle sizes was carefully studied by means of structural and optical characterization methods. In particular, the high resolution electron and transmission microscopy has been deployed together with X-ray diffraction technique to determine fundamental structural properties of nanopowders. The optical characterization was focused mainly on basic excitation and emission features and their sensitiveness on dopant concentration and the average nanoparticle size.  相似文献   

12.
An extensive theoretical study is performed for wide bandgap crystalline oxides and nitrides, namely, SiO2, GeO2, Al2O3, Si3N4, and Ge3N4. Their important polymorphs are considered which are for SiO2: α-quartz, α- and β-cristobalite and stishovite, for GeO2: α-quartz, and rutile, for Al2O3: α-phase, for Si3N4 and Ge3N4: α- and β-phases. This work constitutes a comprehensive account of both electronic structure and the elastic properties of these important insulating oxides and nitrides obtained with high accuracy based on density functional theory within the local density approximation. Two different norm-conserving ab initio pseudopotentials have been tested which agree in all respects with the only exception arising for the elastic properties of rutile GeO2. The agreement with experimental values, when available, are seen to be highly satisfactory. The uniformity and the well convergence of this approach enables an unbiased assessment of important physical parameters within each material and among different insulating oxide and nitrides. The computed static electric susceptibilities are observed to display a strong correlation with their mass densities. There is a marked discrepancy between the considered oxides and nitrides with the latter having sudden increase of density of states away from the respective band edges. This is expected to give rise to excessive carrier scattering which can practically preclude bulk impact ionization process in Si3N4 and Ge3N4.  相似文献   

13.
Cubic perovskite SrTi1−xMnxO3 nanopowders with x = 0–0.5, which is much higher than the conventionally believed Mn incorporation limit, and particles sizes 10–80 nm have been successfully synthesized using the citrate sol–gel method. The crystalline structure, the morphology, the chemical composition and the lattice constant behavior versus the annealing temperature and the Mn concentration have been characterized using X-ray diffraction, scanning electron microscopy and proton-induced X-ray emission techniques. Studies of Raman light scattering and the magnetic properties revealed the activation of the TO2 polar mode and the magnetic ordering effects at low temperatures. Such features are treated as possible evidence of non-d0 Mn-driven transition to a polar phase with multiferroicity in heavily concentrated perovskite SrTi1−xMnxO3 nanopowders.  相似文献   

14.
Lanthanide orthoborates of composition LnBO3 (Ln = Tb, La, Pr, Nd, Sm, Eu, Gd, Dy, Y) and LaBO3:Gd, Tb, Eu have been prepared by metathesis reaction. This method provides a convenient route for the synthesis of orthoborates and its solid solutions at low temperatures. Powder X-ray diffraction and FT-IR spectroscopy were used to characterize these borates. Rare earth borates, (LnBO3) are isomorphous with different forms of CaCO3 depending on the radius of rare earth ion. LaBO3, LaBO3:Gd, Tb, Eu, PrBO3, NdBO3 crystallized in aragonite structure, SmBO3 crystallized in H-form and TbBO3, EuBO3, GdBO3, DyBO3, YBO3 crystallized in vaterite structure. The structural analysis of TbBO3 was carried out. The morphology of these borates was obtained from Scanning electron microscopy. Spin-Hamiltonian parameters for Gd3+ are deduced from room temperature electron spin resonance spectrum of LaBO3:Gd. The luminescence of LaBO3:Tb, Eu gave characteristics peaks corresponding to Tb3+, Eu3+ respectively.  相似文献   

15.
BaTiO3 nanopowders were attempted to synthesize by using a novel straight-forward, solvent free reactions under autogenic pressure at elevated temperature (RAPET) approach. The as-prepared BaTiO3 nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, high-resolution TEM, and convergent-beam electron diffraction. It was found that Ba(OH)2·8H2O and Ti(OBu)4 could be appropriate starting materials to synthesize BaTiO3 at 973 K for 2 h by using RAPET approach. Pure tetragonal BaTiO3 nanopowders could be obtained by exceeding moderate amount of Ba(OH)2·8H2O in the starting materials. The obtained BaTiO3 nanoparticles had well dispersion and crystallinity, possessed a tetragonal perovskite structure at room temperature and relatively narrow particle size distribution.  相似文献   

16.
Polycrystalline specimens of the thermoelectric material Zn4Sb3 were prepared by the hot-pressing method at various temperatures and pressures and their thermoelectric properties were evaluated in a temperature range from 298 K to 673 K. A single phase of Zn4Sb3 was obtained in the samples prepared at 673 K with a pressure above 150 MPa, whereas ZnSb was placed in the Zn4Sb3 matrix for the samples prepared at 100 MPa. The electrical transport properties of the single phase compound showed p-type conduction and metallic transport behavior based on the temperature dependence. The sample produced at 673 K under a pressure of 200 MPa exhibited the highest ZT value of 1.36 at 673 K. This study suggests that the dense and single-phase Zn4Sb3 compound is a route to achieve a high thermoelectric performance.  相似文献   

17.
Er3+ and Yb3+ codoped Y2O3 and (Y0.9La0.1)2O3 transparent ceramics were fabricated by the conventional ceramics processing with nanopowders. Compared to Er/Yb:Y2O3, Er/Yb:(Y0.9La0.1)2O3 ceramics had higher transmittance. Intense upconversion (UC) and infrared emission (1543 nm) were observed under excitation of 980 nm. According to three intensity parameters Ω2, Ω4, and Ω6 fitted by the Judd-Ofelt theory, the spectroscopic quality parameters (X), radiative lifetimes (τrad), and emission cross-sections (αem) were determined. Er/Yb:(Y0.9La0.1)2O3 ceramics owned broader peaks and longer lifetime (12.3 ms) at 1548 nm due to the glass-like structure of (Y0.9La0.1)2O3 ceramics. The results showed Y2O3 and Y1.8La0.2O3 transparent ceramics are promising gain media for developing the solid-state 1.5 μm optical amplifiers and tunable UC lasers.  相似文献   

18.
A novel method for the synthesis of transition-metal boride nanopowder has been developed using a mechanochemical reaction between LiBH4, LiH and transition-metal chloride (TiCl3 and VCl3) by high energy ball milling. This method successfully produces TiB2 and VB2 particles dispersed within a soluble LiCl matrix. Subsequent washing with distilled water, ethanol and acetone to remove the LiCl matrix phase yields TiB2 and VB2 nanopowders of 15-60 nm particle size. From the X-ray diffraction patterns and high resolution transmission electron microscopy image, it is found that each particle is polycrystalline consisting of 3-5 nm crystallites. Neither particle nor crystallite size are increased significantly after heating at 680 °C.  相似文献   

19.
This contribution presents two simple and cost-effective routes for the low-temperature and large-scale production of pure and Eu-doped Y3Al5O12 (yttrium aluminum garnet YAG) nanopowders. The proposed methodologies combine a mechanically assisted metathesis reaction or coprecipitation from solution followed by crystallization of the obtained precursors from molten sodium nitrate/nitrite. Both procedures allow obtaining pure and/or doped YAG nanopowders at remarkably low temperatures, i.e. already at 350 °C although firing at 500 °C is needed in order to get single phase and fully crystalline materials. As-obtained samples were characterized by XRD, TEM, Raman, IR and luminescence methods. These methods showed that the mean crystallite size is near 23–31 and 51 nm, when crystallization is performed from the amorphous precursor obtained by a mechanically assisted metathesis reaction and coprecipitation, respectively. Raman and IR spectra indicated better crystallinity of the powders prepared at 500 °C. The emission study showed that the intensity ratio between hypersensitive 5D0 → 7F2 and magnetic-dipole 5D0 → 7F1 transitions of Eu3+ is significantly larger than expected for well-crystallized YAG. Origin of this behavior is discussed.  相似文献   

20.
The specific heats, thermal decompositions and thermal properties of the phase transitions in KClO3 KBrO3 and KIO3 crystals were measured. The thermal stability of the compounds decreased in the order KIO3 > KCIO3 > KBrO3. Over the temperature range 250–600 K, no phase transitions were detected for KBrO3: one at 545 K for KClO3 and two for KIO3 at 345 and 487 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号