首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Co2O3 doped BaWO4-Ba0.5Sr0.5TiO3 composite ceramics, prepared by solid-state route, were characterized systematically, in terms of their phase compositions, microstructure and microwave dielectric properties. Doping of Co2O3 promoted grain growth, reduced Curie temperature and broadened phase-transition temperature range of BaWO4-Ba0.5Sr0.5TiO3, which were attributed mainly to the substitution of Co3+ for Ti4+ at B site in the perovskite lattice. Dielectric diffusion behaviors of the composite ceramics were discussed. The composite ceramics all had dielectric tunability of higher than 10% at 30 kV/cm and 10 kHz, with promising microwave dielectric properties. Specifically, the sample doped with 0.2 wt.% Co2O3 exhibited a tunability of 20%, permittivity of 225 and Q of 292 (at 1.986 GHz), making it a suitable candidate for applications in electrically tunable microwave devices.  相似文献   

2.
Al2O3/3Y-TZP (30 vol.%) composite was pressurelessly sintered with addition of TiO2MnO2 and/or CaOAl2O3SiO2 glass. It was found that TiO2MnO2 addition greatly enhanced the densification of the composite by the formation of a low-viscosity liquid at sintering temperature. In contrast, the high-viscosity liquid formed by CaOAl2O3SiO2 glass improved mechanical properties because of its repressing effect on grain growth. The composite could be obtained at a temperature as low as 1400°C by co-doping with TiO2MnO2 and CAS glass. Bending strength of 552±64 MPa and fracture toughness of 6.03±0.22 MPa m1/2 were obtained with a doping level of 2 wt.% TiO2MnO2 and 2 wt.% CAS glass.  相似文献   

3.
This study was aimed to systematically investigate the luminescence response of SiO2:Ce3+ nanophosphors with different excitation sources. The powders were synthesized by using an urea assisted combustion method. SiO2:Ce1m% samples were also annealed at 1000 °C for 1 h in a charcoal environment to reduce incidental Ce4+ to partial Ce3+ ions. High resolution transmission electron microscopy (HRTEM) images of the as synthesized and annealed powder samples confirmed that the particles were spherical and in the size range of 3-8 nm in diameter. X-ray diffraction (XRD) and electron dispersion spectroscopy (EDS) results showed that the SiO2 was crystalline and pure. Diffused reflectance, photoluminescence (PL) and cathodoluminescence (CL) results of the SiO2:Ce3+ samples were obtained and compared with each other. The CL degradation and the surface reactions on the surface of the SiO2:Ce3+ were studied with X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). A clear improvement in the chemical stability of the SiO2:Ce3+ annealed at 1000 °C were obtained.  相似文献   

4.
We report here on an ecologically friendly carbothermal reduction method to realize SrS:Ce phosphor. The method effectively reduces the preparation temperature by 100 °C. The effect of sulfur and charge compensator were studied separately and in combination, on the luminescent properties of SrS:Ce phosphor prepared from SrSO4:Ce(SO4)2·4H2O using this method without inert gas or hazardous gas (H2S) environment. To analyze the role of charge compensator on the luminescent emission property of SrS:Ce, various fluxes, viz., NH4Cl, NaCl were used. The synthesized products were characterized by XRD, photoluminescence emission and excitation spectroscopy (PLE). SrS:Ce showed a bright blue-green emission at 480 and 540 nm corresponding to energy bands originating from 2T2g (5d) to 2F7/2, 2F5/2 (4f) of Ce3+ transitions. The characterization results showed the formation of SrS calcined at 900 °C for 5 h with an increase in blue-green luminescence intensity after the addition of sulfur and charge compensator, separately. When the sulfur and NH4Cl were jointly added, the intensity of blue emission was enhanced, whereas, that of green emission was suppressed. The excitation spectrum showed a fundamental absorption of SrS host crystal lattice at 283 nm and Ce3+ absorption at 430 nm respectively. The CIE (Commission International de’Eclairge) chromaticity coordinates of the phosphor are also reported.  相似文献   

5.
Ce3+-activated yttrium aluminum garnet (Y3Al5O12:Ce, YAG:Ce) powder as luminescent phosphor was synthesized by the solid-state reaction method. The phase identification, microstructure and photoluminescent properties of the products were investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), absorption spectrum and photoluminescence (PL) analysis. Spherical phosphor particle is considered better than irregular-shaped particle to improve PL property and application, so this phosphor was granulated into a sphere-like shape by a spray-drying device. After calcinating at 1500 °C for 0, 4, and 8 h, the product was identified as YAG and CeO2 phases. The CeO2 phase content is decreased by increasing the calcination time or decreasing the Ce3+ doping content. The product showed higher emission intensity resulted from more Ce3+ content and larger grain size. The product with CeO2 was found to have lower emission intensity. This paper presents the crystal structures of Rietveld refinement results of powder XRD data.  相似文献   

6.
Sunlight irradiating the surface of the Earth represents a maximum input available for a solar catalytic process of 50 WUV m−2. We propose using high-porosity, metallic, reticulated foams as the support medium for the photocatalyst in order to improve the apparent quantum yield. The layer of TiO2 was applied by dip-coating. The measurement of the degradation kinetics was carried out on a model target molecule, 2,4 dichlorophenol, at an initial concentration of 10 mg l−1. The aim was to assess the efficiency of the foams as a photocatalytic media compared to that of a suspension of catalytic powder (Degussa P25) and the flat 2D support (Ahlstrom cellulose media). The apparent quantum yield of the foam scaffold carrying the TiO2 was high, showing that, as with the powder suspension, foam makes good use of the UV rays to break down molecules. It is noteworthy that the apparent quantum yield of the foam tended towards that observed for suspensions which form the ideal support thanks to their optimal ability to harness the light.  相似文献   

7.
Ce-Sn-O mixed oxide films prepared by simultaneous Sn metal and cerium oxide magnetron sputtering were studied by high resolution photoemission. The analysis showed that the degree of reduction of the cerium oxide depends on the tin concentration in the film. Ce4+ → Ce3+ conversion is explained by a charge transfer from Sn atoms to unoccupied orbital Ce 4f0 of cerium oxide by forming Ce 4f1 state. The X-ray Photoelectron Spectroscopy data were compared with study of the single-crystalline CeO2 thin films and Sn/CeO2(111) model system prepared and studied in situ excluding air exposure effects.  相似文献   

8.
The present investigation aims to demonstrate the potentiality of Tb3+ and Ce3+ co-doped Ca4Y6(SiO4)6O phosphors. By incorporation of Ce3+ into Ca4Y6(SiO4)6O: Tb3+, the excitation band was extended from short-ultraviolet to near-ultraviolet region. The energy transfer from Ce3+ to Tb3+ in Ca4Y6(SiO4)6O host was investigated and demonstrated to be a resonant type via a dipole–dipole mechanism with the critical distance of 10.2 Å. When excited by 352 nm, Ca4Y6(SiO4)6O: Ce3+, Tb3+ exhibited a brighter and broader violet-blue emission (421 nm) from the Ce3+ and an intense green emission (542 nm) from the Tb3+. Combining the two emissions whose intensities were adjusted by changing the doping levels of the co-activator, an optimized white light with chromaticity coordinates of (0.278, 0.353) is generated in Ca4Y6(SiO4)6O: 2% Ce3+, 8% Tb3+, and this phosphor could be potentially used in near-ultraviolet light-emitting diodes.  相似文献   

9.
Powder phosphor yttrium aluminum garnet (YAG), doped with trivalent cerium (Ce3+) is synthesized by sol-gel method. The formation of YAG and YAG:Ce (cerium-doped yttrium aluminum garnet) was investigated by means of X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were also used. The purified crystalline phases of YAG and YAG:Ce were obtained at 1000 °C. The maximum average grain size is about 20-23 nm for undoped samples and 28-34 nm for doped samples. The crystalline YAG:Ce emission shows one peak in the range 480-535 nm with the maximum near 520 nm. Photoluminescence (PL) intensity of 5d → 4f transition of Ce3+ increased with increasing annealing temperature. With increasing the concentration of Ce3+, the photoluminescence peak shifts towards the red region.  相似文献   

10.
TiO2/Al-MCM-41 mesoporous materials were prepared via sol-gel method by loading titania onto Al-MCM-41 mesoporous molecular sieve by hydrothermal treatment from coal-series kaolin as raw material. The TiO2/Al-MCM-41 mesoporous materials were characterized by XRD, FT-IR, HRTEM, N2 adsorption-desorption and the photocatalytic degradation of methyl orange solution under visible light irradiation. The results showed that the TiO2/Al-MCM-41 mesoporous materials possessed a high surface area of 369.9–751.3 m2/g and a homogeneous pore diameters of 2.3–2.8 nm. The titania crystalline phase was anatase, and the particles size of TiO2 increased with TiO2 content. The Al-MCM-41 mesoporous materials exhibited excellent photodegradation activity under visible-light irradiation for methyl orange.  相似文献   

11.
In this paper, an interconnecting ceramic for solid oxide fuel cells was developed, based on the modification from La0.7Ca0.3CrO3−δ by addition of Ce0.8Sm0.2O1.9. It is found that addition of small amount Ce0.8Sm0.2O1.9 into La0.7Ca0.3CrO3−δ dramatically increased the electrical conductivity. For the best system, La0.7Ca0.3CrO3−δ + 5 wt.% Ce0.8Sm0.2O1.9, the electrical conductivity reached 687.8 S cm−1 at 800 °C in air. In H2 at 800 °C, the specimen with 3 wt.% Ce0.8Sm0.2O1.9 had the maximal electrical conductivity of 7.1 S cm−1. With the increase of Ce0.8Sm0.2O1.9 content the relative density increased, reaching 98.7% when the Ce0.8Sm0.2O1.9 content was 10 wt.%. The average coefficient of thermal expansion at 30-1000 °C in air increased with Ce0.8Sm0.2O1.9 content, ranging from 11.12 × 10−6 to 12.46 × 10−6 K−1. The oxygen permeation measurement illustrated a negligible oxygen ionic conduction, indicating it is still an electronically conducting ceramic. Therefore, this material system will be a very promising interconnect for solid oxide fuel cells.  相似文献   

12.
The fast recombination of photo-generated conduction band electrons (e cb ? ) and valance band holes (h vb + ) of TiO2 results in an unsatisfactory photocatalytic performance for organic degradation. To increase the efficiency of charge separation, TiO2 was modified by Cu–Ce co-doping considering the better redox properties of copper–ceria oxide with respect to the single oxide, i.e., an easier electron capturing ability. An optimal Cu–Ce co-doped TiO2 with the initial molar ratio of Cu/Ce at 3:1 was prepared by a hydrothermal method with the aim to greatly promote the charge separation, and characterized by XRD, BET, DRS, PL, HR-TEM, and XPS techniques. Upon ultraviolet light irradiation, it exhibits significantly enhanced photocatalytic activity, about 5.8 times that of Ti–HF. The presence of Cu2+ and Ce3+/Ce4+ benefits electrons captured by molecular oxygen, while an increased hydroxyl groups upon Cu–Ce co-doping consume more holes, resulting in prolonged lifetime of photo-generated carriers. Moreover, it is proved that electron transfers preferably from conduction band (CB) of TiO2 to CB of CuO and then to nearby CeO2.  相似文献   

13.
SnO2-TiO2 composite thin films were fabricated on soda-lime glass with sol-gel technology. By measuring the contact angle of the film surface and the degradation of methyl orange, we studied the influence of SnO2 doping concentration, heat-treatment temperature and film thickness on the super-hydrophilicity and photocatalytic activity of the composite films. The results indicate that the doping of SnO2 into TiO2 can improve their hydrophilicity and photocatalytic activity, and the composite film with 1-5 mol% SnO2 and heat-treated at 450°C is of super-hydrophilicity. The optimal SnO2 concentration for the photocatalytic activity is 10 mol% and larger film thickness is helpful to reduce the contact angle of the composite films.  相似文献   

14.
The Ce0.5Zr0.3Al0.2O1.9/Pd-γ-Al2O3 catalyst prepared by a mechanochemical route and calcined at 1000 °C for 20 h in air atmosphere to evaluate the thermal stability. The prepared Ce0.5Zr0.3Al0.2O1.9/Pd-γ-Al2O3 catalyst was characterized for the oxygen storage capacity (OSC) and CO oxidation activity in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique were employed. The OSC values of all samples were measured at 600 °C using thermogravimetric-differential thermal analysis. Ce0.5Zr0.3Al0.2O1.9/Pd-γ-Al2O3 catalyst calcined at 1000 °C for 20 h with a BET surface area of 41 m2 g−1 exhibited the considerably high OSC of 583 μmol-O g−1 and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO2/Pd-γ-Al2O3 and Ce0.5Zr0.5O2/Pd-γ-Al2O3 for comparison.  相似文献   

15.
The solid-solid interactions between nanosized pure and NiO-substituted ferric and titanium(IV) oxides have been investigated using XRD technique and microstructure studies, also magnetic properties were studied using vibrating samples magnetometer (VSM). The amounts of substituting Ni2+ were x = 0, 0.2, 0.4, 0.6, 0.8 and 1 mole. A mixture equimolar proportions of finely powdered Fe2O3 and TiO2 were mixed with NiO, ball milled, compressed at 250 kg/cm2 and fired at 1200 °C for 4 h.The obtained results showed that with substituting Ni2+ concentration x = 0 only Fe2TiO5 phase is present (∼80 nm) which showed a very small saturation magnetic flux density (Bs), remnant magnetic flux density (Br) and the maximum energy product (BH)max. By the addition of x = 0.2 NiO, new phases were observed NiTiO3 and NiFe2O4 of crystallite sizes 160 and 110 nm, respectively. By the increase of substituting Ni2+ concentration the NiTiO3 and NiFe2O4 phases increased on the expense of Fe2TiO5 up to x = 0.4, then the increase in substituting Ni2+ concentration led to a decrease in Fe2TiO5 and NiTiO3 while NiFe2O4 increases which results in a great improvement of magnetic properties.All samples exhibit a catalytic activity towards H2O2 decomposition and the values of rate constant increase with increasing amount of Ni2+ substituting. The most acidic active sites are shown by specimens substituted with x = 0 this concludes that H2O2 decomposition is not favored on acidic active sites.  相似文献   

16.
A Ni/scandia-stabilized zirconia (ScSZ) cermet anode was modified by coating with nano-sized gadolinium-doped ceria (GDC, Gd0.2Ce0.8O2) within the pores of the anode for a solid oxide fuel cell (SOFC). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed in the anode characterizations. Open circuit voltages (OCVs) increased from 1.027 to 1.078 V, and the maximum power densities increased from 238 to 825 mW/cm2, as the operating temperature of a SOFC with 2.0 wt.%GDC-coated Ni/ScSZ anode was increased from 700 to 850 °C in humidified hydrogen. The coating of nano-sized Gd0.2Ce0.8O2 particle within the pores of the porous Ni/ScSZ anode significantly improved the performance of anode supported cell. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibited far greater impedances than the cell with 2.0 wt.%GDC-coated Ni/ScSZ anode. Consequently, 2.0 wt.%GDC-coated Ni/ScSZ anode could be used as a novel anode material for a SOFC due to better electrochemical performance.  相似文献   

17.
La1.6Sr0.4NiO4+δ-Ce0.8Sm0.2O1.9 composite cathodes were prepared successfully using combustion synthesis method for intermediate temperature solid oxide fuel cells. The chemical compatibility, thermal expansion behavior, electrical conductivity and electrode performance were studied. The X-ray diffraction of La1.6Sr0.4NiO4+δ-Ce0.8Sm0.2O1.9 composite result proved a slight reaction between La1.6Sr0.4NiO4+δ and Ce0.8Sm0.2O1.9. Both the thermal expansion coefficient and the electrical conductivity of La1.6Sr0.4NiO4+δ-Ce0.8Sm0.2O1.9 decreased with increasing Ce0.8Sm0.2O1.9 content. AC impedance spectroscopy measurements indicated that the addition of 30 wt% Ce0.8Sm0.2O1.9 to La1.6Sr0.4NiO4+δ exhibited the lowest polarization resistance (0.238 Ωcm2) at 800 °C in air, which was only one fourth of the La1.6Sr0.4NiO4+δ electrode measured at the same temperature.  相似文献   

18.
In this work, the single source organometallic precursor Bu4Sn6S6 was impregnated and decomposed on the surface of TiO2 to produce semiconductor composites. 119Sn Mössbauer, Raman and ultra violet/visible spectroscopies, powder X-ray diffraction, temperature programmed reduction and surface area suggest for Sn contents of 1, 5 and 10 wt%, the formation of a highly dispersed unstable SnS phase which is readily oxidized by air at room temperature to form SnO2 on the TiO2 surface. The composite with Sn 30 wt% produced a mixture with the phases SnS/γ-Sn2S3 and SnO2. Photocatalytic experiments with the composites SnXn/TiO2 using the textile dye Drimaren red as a probe molecule showed a first-order reaction with rate constants kabsorbance for the composites with Sn 1 and 5% higher than pure TiO2 which was explained by the formation of the more active photocatalyst composite SnO2/TiO2.  相似文献   

19.
Anatase and rutile TiO2 thin films were prepared by chemical vapor deposition with precursors Ti(OPri)4 and Ti(dpm)2(OPri)2 (dpm = 2,2,6,6-tetramethylheptane-3,5-dione and Pri = isopropyl), respectively. The dielectric properties of TiO2 thin films have been studied in 20-1100 K temperature range in air, in controlled Ar/O2 atmospheres, and in vacuum with silicon-based metal-insulator-semiconductor Au/TiO2/Si capacitors. High-temperature (Tc ∼ 980 K) anomalous behavior of dielectric constant was observed in both anatase and rutile TiO2 thin films.  相似文献   

20.
Synthesis and structural characterization of Ce-doped bismuth titanate   总被引:1,自引:0,他引:1  
Ce-modified bismuth titanate nanopowders Bi4−xCexTi3O12 (x ≤ 1) have been synthesized using a coprecipitation method. DTA/TG, FTIR, XRD, SEM/EDS and BET methods were used in order to investigate the effect of Ce-substitution on the structure, morphology and sinterability of the obtained powders. The phase structure investigation revealed that after calcinations at 600 °C powder without Ce addition exhibited pure bismuth titanate phase; however, powders with Ce (x = 0.25, 0.5 and 0.75) had bismuth titanate pyrochlore phase as the second phase. The strongest effect of Ce addition on the structure was noted for the powder with the highest amount of Ce (x = 1) having a cubic pyrochlore structure. The presence of pure pyrochlore phase was explained by its stabilization due to the incorporation of cerium ions in titanate structure. Ce-modified bismuth titanate ceramic had a density over 95% of theoretical density and the fracture in transgranular manner most probably due to preferable distribution of Ce in boundary region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号