首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous carbon materials formed by nanosized particles have been synthesized by means of a nanocasting technique based on the use of mesostructured silica materials as templates. We found that the modification of the chemical characteristics of the surfactant employed allows mesostructured silica materials with particle sizes <100 nm to be synthesised. The mesoporous carbons obtained from these silica materials retain the structural properties of the silica used as template and consequently they have a particle size in the 20-100 nm range. These carbons exhibit large BET surfaces areas (up to 1300 m2 g−1) and high pore volumes (up to 2.5 cm3 g−1), a framework confined porosity made up of uniform mesopores (3.6 nm) and an additional textural porosity arising from the interparticle voids between the sub-micrometric particles. The main advantage of nanometer-sized mesoporous carbons in relation to the micrometer-sized carbons is that they have enhanced mass transfer rates, which is important for processes such as adsorption or catalysis.  相似文献   

2.
Mesostructured cellular foam (MCF) silica with high surface area (>600 m2/g) and large pore volume (≈1.16 cm3/g) was synthesized via a surfactant templating method. The MCF silica was then modified by grafting 3-aminopropyl-triethoxysilane (APTES) to create a positive charge on the surface, and thus, to provide sites for the immobilization of H3PMo12O40. By taking advantage of the overall negative charge of [PMo12O40]3−, the H3PMo12O40 catalyst was chemically immobilized on the aminopropyl group of the surface modified MCF silica as a charge matching component. The mesopore structure of MCF silica was maintained even after the surface modification step and the subsequent immobilization step of H3PMo12O40. The H3PMo12O40 species were finely and molecularly dispersed on the surface modified MCF silica via chemical immobilization.  相似文献   

3.
Photo-induced complex formation of tris-2,2′-bipyridine iron(II) complex ([Fe(bpy)3]2+) from the mixture of FeCl3 and 2,2′-bipyridine was achieved in silica gel containing 150-300 μm silica particles, derived from a complex emulsion with HCl aqueous solution and tetraethyl orthosilicate (TEOS). More than 95% of Fe(III) and 2,2′-bipyridine were incorporated in silica particles. Yellow-red color change, due to [Fe(bpy)3]2+, was observed by irradiation with 365 nm UV beam at 0.3 mW cm−2 for 120 s. The complex formation accompanies simultaneous spin transition from the high-spin state of Fe(III) to the low-spin state of Fe(II).  相似文献   

4.
Superfine powder SrLu2O4:Eu3+ was synthesized with a precursor prepared by an EDTA - sol-gel method at relatively low temperature using metal nitrate and EDTA as starting materials. The heat decomposition mechanism of the precursor, formation process of SrLu2O4:Eu3+and the properties of the particles were investigated by thermo-gravimetric (TG) - differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) analyses. The results show that pure SrLu2O4:Eu3+ superfine powder has been produced after the precursor was calcinated at 900 °C for 2 h and has an elliptical shape and an average diameter of 80-100 nm. Upon excitation with 250 nm light, all the SrLu2O4:Eu3+ powders show red and orange emissions due to the 4f-4f transitions of Eu3+ ions. The highest photoluminescence intensity at 610 nm was found at a content of about 6 mol% Eu3+. Splitting of the 5D0-7F1 emission transition revealed that the Eu3+ ions occupied two nonequivalent sites in the crystallite by substituting Lu3+ ions.  相似文献   

5.
Preparation and characterization of porous ultrafine Fe2O3 particles   总被引:1,自引:0,他引:1  
Porous ultrafine Fe2O3 particles were prepared by homogeneous precipitation method. Fe3+ and urea were chosen as starting materials and anionic surfactant as the template. It is shown that the reaction results in the precipitation of a gelatinous hydrous iron oxide/surfactant mixture, which gives ultrafine Fe2O3 particles after drying and calcinations. The products were characterized by XRD, TEM, TG/DTA and BET. Conventional XRD patterns show that the products are mixture of γ-Fe2O3 and α-Fe2O3 phase after being sintered at 350 °C, and γ-Fe2O3 transforms entirely to α-Fe2O3 when sintered at 650 °C. The low-angle XRD patterns indicate that the mesostructure can only exist between 350 and 400 °C. TEM results show that the Fe2O3 particles have diameters of about 30 nm and lengths ranging from 100 to 120 nm; in each particle, there are several vermiculate-like mesopores with diameter of about 20-25 nm. The BET surface areas in excess of 50 m2/g are obtained after calcinations at 350 °C. The BJH desorption average pore width is around 22 nm, which is in agreement with the TEM results. The results show that anionic surfactant and sintering temperature are important to obtain this special morphology.  相似文献   

6.
Layered manganese oxides with basal spacings up to 38.1 Å have been synthesized by a facile novel method in which cationic surfactant CTAB directly reacts with MnSO4·H2O and NaOH. The as-synthesized samples have expanded birnessite-type layered structures characterized by powder XRD and TEM. Synthetic parameters that are important to the formation and the basal spacing of the layered mesostructures are investigated, including the surfactant concentration, OH/Mn2+ ratio, CTAB/Mn2+ ratio and aging time. Mechanisms based on self-assembling are discussed.  相似文献   

7.
The luminescence properties of LaPO4:Tb3+,Me3+ (Me = Gd, Bi, Ce) were investigated under VUV excitation. The results indicate that only Gd3+ plays an intermediate role in energy transfer from the host absorption band to Tb3+ under 147 nm excitation, Bi3+ and Ce3+ have no contribution to improving the emission intensity of La0.95PO4:Tb0.053+ because the charge transfer band of Bi3+ is mismatching for the excitation wavelength (147 nm) and Ce3+ can be oxidized easily. A new band at 135 nm is observed in the excitation spectrum of La0.92PO4:Tb0.053+,Bi0.033+, which may correlate with the absorption of Bi2+.  相似文献   

8.
A spectrum modifying glassy luminescent layer with antireflection properties has been prepared with Eu3+ ions embedded in silica gel for solar cell applications. Preparation of such matrix by sol-gel process and change in luminescence properties in transforming from amorphous to crystalline phase are described. Luminescent Eu3+ species in amorphous silica matrix show intense red emission at 614 nm by absorbing UV/blue light. Amorphous environment with reduced symmetry for Eu3+ ions results in an unprecedented short decay time of 145 μs for 5D0-7F2 electric dipole transition. In the crystalline monoclinic phase of Eu2O3 nanoparticles, concentration quenching of Eu3+ species reduces luminescence output.  相似文献   

9.
Y2O3:Eu3+ red phosphors were prepared by surfactant assisted co-precipitation-molten salt synthesis method. The effects of surfactant content and annealing temperature on the structure and luminescence were investigated by X-ray diffraction and fluorescence spectrophotometer. The use of surfactant reduces the impurities on the surface of particles and promotes the reaction. The color purity of as-prepared Y2O3:Eu3+ red phosphors is improved with the presence of surfactant. In the excitation spectra, two strong bands at 394 and 466 nm are attributed to 7F0,1-5L6, 7F0,1-5D2 transitions of Eu3+ ions respectively. With the excitation of 394 or 466 nm, the as-fabricated samples reveal excellent red emission as high as that of samples monitored by 254 nm. Thus, the Y2O3:Eu3+ is a promising red phosphor for ultraviolet-visible light-emitting diodes.  相似文献   

10.
Mesoporous carbon spheres serving as electrode materials for supercapacitors were synthesized by a facile polymerization-induced colloid aggregation method using melamines as a carbon precursor and commercial colloidal silica as a silica source for hard template. After the carbonization of as-formed resins-template composites at 1000 °C and the removal of the silica template by hydrofluoric acid, the resulting mesoporous carbon spheres with a diameter size of ∼5 μm, specific surface area (up to 1280 m2/g) and uniform pore size as large as 30 nm could be obtained. Due to the enriched nitrogen content and the large pore size of the mesoporous carbon spheres affecting the surface wettability, resistance, and ion diffusion process in the pores, the mesoporous carbon spheres showed a high specific capacitance of 196 F/g in 5 mol/l H2SO4 electrolytes at a discharge current density of 1 A/g.  相似文献   

11.
h-BN nano-tubes, -bamboos, and -fibers were prepared separately from borazine oligomers using an alumina porous template at different wetting times of 20 h, 40 h and 2 weeks at room temperature, respectively. The borazine oligomer in the template was transformed to the h-BN nano-materials by two-step heat-treatment at 600 and 1200 °C in flowing N2. The FT-IR result confirmed the formation of BN. TEM and SEM images showed the formation of the nano-tubes in diameters 200-300 nm with thin walls about 10-20 nm thick, nano-bamboos 200-300 nm wide with knots at the separations of 0.5-1 μm, and the nano-fibers 15-20 μm long with fine crystallized BN particles. The mechanism for the formation of h-BN nano-tubes, -bamboos and -fibers is proposed.  相似文献   

12.
Mesoporous polycrystals of hydroxyapatite-calcium are synthesized via a modified hard-templating route. The structure properties of hydroxyapatite-calcium are characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and N2 adsorption-desorption isotherms. Wide-angle X-ray diffraction and Fourier transform infrared spectroscopy measurements reveal that the crystalline grains consist of highly crystalline pure hydroxyapatite phases. Transmission electron microscopy results show that rod-like hydroxyapatite-calcium grains with an average diameter of about 100 nm long and about 20 nm wide are uniformly distributed, which are also observed with an average pore size of 2-3 nm. Based on N2 adsorption-desorption isotherms investigation, the pore size, surface area and pore volume of mesoporous hydroxyapatite-calcium are 2.73 nm, 42.43 m2 g−1 and 0.12 cm3 g−1, respectively.  相似文献   

13.
Chemical interactions in mixed, aqueous solutions of NH4HCO3 and M(NO3)3·9H2O, where M stands for Ho, Sm, or La, were facilitated under various hydrothermal treatment conditions (pH 8-12 and temperature = 75-135 °C). The solution chemistry established did not make available necessary concentrations of soluble HCO3 and MO(OH)2 species for the formation of dawsonite-type ammonium hydroxymetalocarbonates, NH4M(CO3)(OH)2, but, alternatively, high concentrations of soluble CO32−, and M(H2O)n3+ or M(H2O)n−1(OH)2+ facilitating, respectively, precipitation of corresponding hydrated carbonate, M2(CO3)2·2H2O, or carbonate hydroxide, MCO3(OH). X-ray powder diffractometry, infrared spectroscopy, and thermal analyses proved alternative formation of Ho2(CO3)3·2H2O or LaCO3(OH) under the whole set of hydrothermal treatment conditions probed, and Sm2(CO3)3·2H2O at pH < 10 or SmCO3(OH) at pH ≥ 10, thus implying dependence of the composition of the product carbonate compound on the hydrolysability of the initial M(H2O)n3+ species and, hence, the metal ionic size (La > Sm > Ho). Calcination of the various hydrothermal treatment products at ≥600 °C resulted in the thermal genesis of the corresponding sesqui-oxides (M2O3). Bulk and surface characterization studies of the product oxides, employing N2 sorptiometry and scanning electron microscopy, in addition to the above analytical techniques, revealed overall strong crystallinity, large average crystallite size, and well-defined particle morphology. They revealed, moreover, surfaces, though of limited accessibilities (≤13 m2/g), exposing OH groups of various coordination symmetries and, hence, acid-base properties, thus furnishing promising surface catalytic attributes.  相似文献   

14.
Hollow mesoporous carbon spheres (HMCSs) have been prepared by a simplified replication route from a solid silica core/mesoporous silica shell aluminosilicate (SCMS-Al) template, which was synthesized by directly incorporating aluminum species into the mesoporous framework during template synthesis. The size of HMCSs can be tuned between 80 and 470 nm by simply changing the diameters of SCMS-Al. The HMCSs have uniform mesopores with a narrow pore size distribution (3.4-4.1 nm), and high surface area, (890-1150 m2/g) and total pore volumes (0.75-1.15 cm3/g). The techniques of N2 sorption isotherms, TEM, EDX and SEM were used to characterize the as-synthesized spheres.  相似文献   

15.
Supermicroporous zirconium phosphate materials possessing wormhole-like pores in the size range 1.3-1.8 nm were synthesized by using nonionic poly(ethylene oxide) surfactant (e.g., C16H33(EO)10, C18H35(EO)10) as a structure directing agent. The textural and structural properties were characterized by powder X-ray diffraction, N2 adsorption analysis, differential thermal analysis, scanning and transmission electron microscopy, 31P MAS NMR and infrared spectroscopy. The synthesized materials are amorphous, exhibiting high surface areas, narrow pore size distributions, excellent thermal stabilities (over 800 °C) and acidic properties. The supermicropore size of the synthesized zirconium phosphate may be tunable by the variation of alkyl chain length of the surfactant.  相似文献   

16.
A mesostructured tungsten disulfide (WS2) material was prepared through a solid-phase reaction utilizing ammonium tetrathiotungstate as the precursor and n-octadecylamine as the template. The as-synthesized WS2 material was characterized by X-ray powder Diffraction (XRD), Low-temperature N2 Adsorption (BET method), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The characterization results indicate that the WS2 material has the typical mesopore structure (3.7 nm) with a high specific surface area (145.9 m2/g), and large pore volume (0.18 cm3/g). This approach is novel, green and convenient. The plausible mechanism for the formation of the mesostructured WS2 material is discussed herein.  相似文献   

17.
The Tm3+:NaGd(MoO4)2 crystal with dimensions of Φ 15 × 38 mm2 was grown by Czochralski method. Polarized absorption and fluorescence spectra at room temperature were investigated. The absorption bands attributed to 3H6 → 3H4 transition have large absorption cross-sections, which are 3.99 × 10−20 and 2.36 × 10−20 cm2 for σ- and π-polarization, respectively. The emission bands corresponding to the 3H4 → 3H6 transition are strong and broad with emission cross-sections of 1.33 × 10−20 and 1.20 × 10−20 cm2 for σ- and π-polarization, respectively. The correlative full widths at half maximum are 35 nm for σ-polarization and 36 nm for π-polarization. The fluorescence lifetime for the 3H4 → 3F4 transition is 146 μs and the luminescent quantum efficiency is 76.8%.  相似文献   

18.
This study is concerning about optical and morphological properties of novel porphyrin doped silica materials consisting in 5,10,15,20-tetrakis(4-allyloxyphenyl)porphyrin (TAPP) encapsulated in silica matrices, exhibiting intensive absorption of light in the red-near IR region. The silica-porphyrin materials were prepared by the sol-gel process, by using different porphyrin immobilization schemes: in situ and by impregnation. As starting materials tetraethoxysilane and isobuthyltrietoxysilane, as silica precursors, N-buthyl-3-methylpyridinium tetrafluoroborate ionic liquid, as additive, and hydrochloric acid and sodium fluoride, as catalysts, were used. The obtained hybrid porphyrin-silica materials were characterized by using BET measurements (Brunauer-Emmett-Teller analysis), thermal analysis, FT-IR, fluorescence and UV-vis spectroscopy techniques. UV-vis behavior and fluorescence emissions and excitations were evaluated in terms of synthesis stages and immobilization processes. The obtained hybrid porphyrin-silica materials presented increased fluorescence emission with maxima situated at about 655 nm and 715 nm in comparison with the porphyrin base that make these transparent materials candidates for second generation photosensitizers. BET analysis revealed that every introduction of TAPP causes decreasing on surface area of the nanomaterial. Although, when the porphyrin is immobilized by in situ method the reduction is lower than in case of using impregnation method, that is leading to the conclusion that the porphyrin is placed inside on the silica network in both studied cases, independent of the performed method of immobilization. The pore size is narrowly distributed in the range of 1.97-3.81 nm for in situ obtained materials and in the range of 3.07-4.62 for hybrids obtained by impregnation. These materials with tunable pore sizes diameter are promising for building of sensor devices.  相似文献   

19.
4ZnO·B2O3·H2O is commonly used as a flame-retardant filler in composite materials. The microstructure of the powder is of importance in its applications. In our study, for the first time, one-dimensional (1D) nanostructure of 4ZnO·B2O3·H2O with rectangle rod-like shape has been synthesized by a hydrothermal route in the presence of surfactant polyethylene glycol-300 (PEG-300). The nanorods have been characterized by X-ray powder diffraction (XRD), inductively coupled plasma with atomic emission spectroscopy (ICP-AES), thermogravimetry (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with selected area electron diffraction (SAED) as well as high-resolution transmission electron microscopy (HRTEM). These nanorods are about 70 nm in thickness, 150-800 nm in width and have lengths up to a few microns. 4ZnO·B2O3·H2O nanorods crystallize in the monoclinic space group P21/m, a = 6.8871(19) Å, b = 4.9318(10) Å, c = 5.7137(16) Å, β = 98.81(21)° and V = 191.779(71) Å3.  相似文献   

20.
In this paper, a series of pure Ni1 − xZnxFe2O4 (0 ≤ x ≤ 1) spinel ferrites have been synthesized successfully using a novel route through calcination of tailored hydrotalcite-like layered double hydroxide molecular precursors of the type [(Ni + Zn)1 − x − yFey2+Fex3+(OH)2]x+(SO42−)x/2·mH2O at 900 °C for 2 h, in which the molar ratio of (Ni2+ + Zn2+)/(Fe2+ + Fe3+) was adjusted to the same value as that in single spinel ferrite itself. The physico-chemical characteristics of the LDHs and their resulting calcined products were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Mössbauer spectroscopy. The results indicate that calcination of the as-synthesized LDH precursor affords a pure single Ni1 − xZnxFe2O4 (0 ≤ x ≤ 1) spinel ferrite phase. Moreover, formation of pure ferrites starting from LDHs precursors requires a much lower temperature and shorter time, leading to a lower chance of side-reactions occurring, because all metal cations on the brucite-like layers of LDHs can be uniformly distributed at an atomic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号