共查询到20条相似文献,搜索用时 15 毫秒
1.
Hide‐aki Nishikawa Yoshiyuki Furuya Satoshi Igi Sota Goto Fabien Briffod Takayuki Shiraiwa Manabu Enoki Tadashi Kasuya 《Fatigue & Fracture of Engineering Materials & Structures》2020,43(6):1239-1249
To clarify the effect of microstructural changes on the fatigue property of the weld heat‐affected zone (HAZ), low‐ to high‐cycle fatigue tests were conducted on 16 types of simulated HAZ specimens that had been prepared using thermal processes. The results showed the fatigue S‐N curves of the HAZ to be widely scattered as a function of strength level. These fatigue data were divided into two groups: coarse grain (CG) and fine grain (FG) HAZ, when strain amplitude was used to represent S‐N curves. The fatigue data for the CGHAZ group showed a relatively short fatigue life. Based on surface observations, the initiated fatigue crack size of CGHAZ was larger than that of FGHAZ as a function of microstructural unit size. Hence, fatigue crack growth life, which is almost the same as total fatigue life of CGHAZ, decreased. 相似文献
2.
C. SUN J. XIE A. ZHAO Z. LEI Y. HONG 《Fatigue & Fracture of Engineering Materials & Structures》2012,35(7):638-647
A cumulative fatigue damage model is presented to estimate fatigue life for high‐strength steels in high‐cycle and very‐high‐cycle fatigue regimes with fish‐eye mode failure, and a simple formula is obtained. The model takes into account the inclusion size, fine granular area (FGA) size, and tensile strength of materials. Then, the ‘equivalent crack growth rate’ of FGA is proposed. The model is used to estimate the fatigue life and equivalent crack growth rate for a bearing steel (GCr15) of present investigation and four high‐strength steels in the literature. The equivalent crack growth rate of FGA is calculated to be of the order of magnitude of 10?14–10?11 m/cycle. The estimated results accord well with the present experimental results and prior predictions and experimental results in the literature. Moreover, the effect of inclusion size on fatigue life is discussed. It is indicated that the inclusion size has an important influence on the fatigue life, and the effect is related to the relative size of inclusion for FGA. For the inclusion size close to the FGA size, the former has a substantial effect on the fatigue life. While for the relatively large value of FGA size to inclusion size, it has little effect on the fatigue life. 相似文献
3.
D. Lanning G. K. Haritos T. Nicholas D. C. Maxwell 《Fatigue & Fracture of Engineering Materials & Structures》2001,24(9):565-577
Combined low‐cycle fatigue/high‐cycle fatigue (LCF/HCF) loadings were investigated for smooth and circumferentially V‐notched cylindrical Ti–6Al–4V fatigue specimens. Smooth specimens were first cycled under LCF loading conditions for a fraction of the previously established fatigue life. The HCF 107 cycle fatigue limit stress after LCF cycling was established using a step loading technique. Specimens with two notch sizes, both having elastic stress concentration factors of Kt = 2.7, were cycled under LCF loading conditions at a nominal stress ratio of R = 0.1. The subsequent 106 cycle HCF fatigue limit stress at both R = 0.1 and 0.8 was determined. The combined loading LCF/HCF fatigue limit stresses for all specimens were compared to the baseline HCF fatigue limit stresses. After LCF cycling and prior to HCF cycling, the notched specimens were heat tinted, and final fracture surfaces examined for cracks formed during the initial LCF loading. Fatigue test results indicate that the LCF loading, applied for 75% of total LCF life for the smooth specimens and 25% for the notched specimens, resulted in only small reductions in the subsequent HCF fatigue limit stress. Under certain loading conditions, plasticity‐induced stress redistribution at the notch root during LCF cycling appears responsible for an observed increase in HCF fatigue limit stress, in terms of net section stress. 相似文献
4.
M. Benedetti V. Fontanari M. Barozzi D. Gabellone M. M. Tedesco S. Plano 《Fatigue & Fracture of Engineering Materials & Structures》2017,40(9):1459-1471
The scope of this study is to characterize the mechanical properties of a novel Transformation‐Induced Plasticity bainitic steel grade TBC700Y980T. For this purpose, tensile tests are carried out with loading direction 0, 45 and 90° with respect to the L rolling direction. Yield stress is found to be higher than 700 MPa, ultimate tensile strength larger than 1050 MPa and total elongation higher than 15%. Low‐cycle fatigue (LCF) tests are carried out under fully reverse axial strain exploring fatigue lives comprised between 102 and 105 fatigue cycles. The data are used to determine the parameters of the Coffin–Manson as well as the cyclic stress–strain curve. No significant stress‐induced austenite transformation is detected. The high‐cycle fatigue (HCF) behaviour is investigated through load controlled axial tests exploring fatigue tests up to 5 × 106 fatigue cycles at two loading ratios, namely R = ?1 and R = 0. At fatigue lives longer than 2 × 105 cycles, the strain life curve determined from LCF tests tends to greatly underestimate the HCF resistance of the material. Apparently, the HCF behaviour of this material cannot be extrapolated from LCF tests, as different damage, cyclic hardening mechanisms and microstructural conditions are involved. In particular, in the HCF regime, the predominant damage mechanism is nucleation of fatigue cracks in the vicinity of oxide inclusions, whereby mean value and scatter in fatigue limit are directly correlated to the dimension of these inclusions. 相似文献
5.
6.
CHENG‐CHENG ZHANG WEI‐XING YAO 《Fatigue & Fracture of Engineering Materials & Structures》2011,34(5):337-344
Several groups of fatigue damage parameters are discussed and then an improved multiaxial high‐cycle fatigue criterion based on critical plane defined by the plane of maximum shear stress range is presented in this paper. A compromising solution to consider the mean normal stress acting on the critical plane is also proposed. The new fatigue criterion extends the range of metallic materials which is valid for the ratio 1.25 < f?1/t?1 < 2. The predictions based on the presented model show a good agreement with test data. 相似文献
7.
A new energy‐based method to evaluate low‐cycle fatigue damage of AISI H11 at elevated temperature 下载免费PDF全文
W Du Y Luo Y Wang S Chen D Yu 《Fatigue & Fracture of Engineering Materials & Structures》2017,40(6):994-1004
AISI H11 (X38CrMoV5‐1) hot‐work tool steel is widely used for making extrusion tools because of its good mechanical properties at high temperature and moderate cost. To predict its lifetime, an energy conservation‐based model was proposed in this paper by introducing the damage rate, which is expressed as the product of damage force and plastic strain rate. The strain‐controlled low‐cycle fatigue tests were conducted to obtain the parameters of the proposed model, while the stress‐controlled low‐cycle fatigue tests were used to validate the proposed model. The results demonstrate that the proposed model is accurate and reliable. Furthermore, the local misorientation was investigated by electron backscatter diffraction to analyse the correlation between the microstructure evolution and the cyclic behaviour, and crack propagation behaviour was identified. 相似文献
8.
Qing Zhang Zhengxing Zuo Jinxiang Liu 《Fatigue & Fracture of Engineering Materials & Structures》2013,36(7):623-630
The low‐cycle fatigue behaviour of a cast Al–12Si–CuNiMg alloy, with a high content of Si, is investigated at 200, 350 and 400 °C. The fatigue test results show that the alloy exhibits symmetrical hysteresis loops, moderate cyclic softening and higher fatigue resistance at higher temperature. The fracture surface analysis reveals that more tear ridges are formed at higher temperature, which strongly affect the fatigue resistance. Furthermore, evaluation of the material fatigue resistance using an energy‐based Halford–Marrow model indicates that the material's ability to absorb and dissipate plastic strain energy is enhanced as temperature increases. 相似文献
9.
Design methods against multiaxial high‐cycle fatigue require the formulation of appropriate criteria that differ in the definition of critical measures introduced to quantify damage, as the amplitude of shear stress. The present paper proposes a novel approach to compute the amplitude of shear stress in multiaxial high‐cycle fatigue. The approach is based on the computation of the convex hull enclosing the stress history under investigation and is validated on proportional and non‐proportional paths in several dimensions and for different materials. High accuracy is achieved when compared with alternative methods from the literature. 相似文献
10.
M. KAMAYA 《Fatigue & Fracture of Engineering Materials & Structures》2010,33(2):94-104
To investigate the effect of bulk damage on fatigue crack initiation, crack initiations due to low‐cycle fatigue of Type 316 stainless steel were observed by electron backscatter diffraction (EBSD) and scanning electron microscopy. The EBSD observations showed that local misorientation developed inhomogeneously due to the cyclic strain, and many cracks were initiated from the slip steps and grain boundaries where the local misorientation was relatively large. The crack initiations could be categorized into two types: enhancement of the driving force by geometrical discontinuity (slip steps and notches), and reduction of material resistance against crack initiation caused by accumulated bulk damage at grain boundaries. In particular, more than half of the cracks were initiated from grain boundaries. However, in spite of the significant bulk damage, the fatigue life was extended by removing the surface cracks under strain of 1 and 2% amplitude. The stress state at the microstructural level was changed by the surface removal, and the damaged portion did not suffer further damage. It was concluded that although bulk damage surely exists, the fatigue life can be restored to that of the untested specimen by removing the surface cracks. 相似文献
11.
Chong Wang Yongjie Liu Alexander Nikitin Qingyuan Wang Min Zhou 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(9):2183-2194
When high‐strength steels are subjected to very high‐cycle fatigue loading, crack initiation site shifts from surfaces to the interior, and a fish‐eye forms on the fracture surface. Majority of the fatigue life is estimated to be associated with the formation of this internal crack morphology. In the present work, features of such internal cracks in two high‐strength steels are studied. Specifically, three initiation patterns are investigated. A general internal crack initiating scenario is proposed base on an understanding of dislocation slip in the materials. A simplified threshold is calculated from Young's modulus and interatomic spacing, defining the transition from the initiation stage to the crack propagation. The relationship between internal crack initiation and slower descending S‐N curves is discussed. 相似文献
12.
The objective of this study is to investigate the effects of mean stress and ageing treatment on the low‐cycle fatigue (LCF) behaviour of a precipitation‐hardening martensitic stainless steel (PHMSS). Uniaxial LCF tests were conducted under strain control with three strain ratios, R = ?1, 0 and 0.5 on specimens heat‐treated to three different tempers, i.e. solution‐annealed (SA), peak‐aged (H900) and overaged (H1150) conditions. Experimental results indicated that under a strain ratio of R = ?1, specimens in H900 temper exhibited longer LCF lifetimes than those in SA and H1150 tempers. However, this advantage for H900 over SA and H1150 tempers disappeared at higher strain ratios (R = 0 and 0.5) due to the greater sensitivity to mean stress effects in H900 temper. For a given temper at high strain amplitudes, the LCF lifetimes under the three applied strain ratios did not show significant differences as a result of the mean stress relaxation effect. However, at low strain amplitudes, cyclic loading at R = ?1 generated longer LCF lifetimes in comparison to R = 0 and 0.5 due to the absence of detrimental tensile mean stress. LCF lifetime data obtained for the given PHMSSs under various combinations of strain ratio and heat treatment were well correlated with a strength‐normalized Smith–Watson–Topper (SWT) parameter in a log–log linear model. 相似文献
13.
Constitutive and damage modelling of H11 subjected to low‐cycle fatigue at high temperature 下载免费PDF全文
L. Ma Y. Luo Y. Wang W. Du J. Zhang 《Fatigue & Fracture of Engineering Materials & Structures》2017,40(12):2107-2117
Hot‐work tool steel H11 is extensively applied in extrusion industries as extrusion tools. The understanding of its mechanical properties and damage evolution as well as failure is crucial for its implementation. In this paper, a finite element (FE) model employing Chaboche unified constitutive model and ductile damage rule is proposed to simulate the mechanical responses of H11 subjected to low‐cycle fatigue (LCF). Accumulated inelastic hysteresis energy is adopted to demonstrate the impact on damage initiation and evolution rules. A series of tension and LCF experiments were conducted to investigate H11's mechanical properties and its deterioration processes. In addition, to deeply understand the deformation and damage mechanism, scanning electron microscope (SEM) investigations were performed on the fracture section of gauge‐length part of the specimen after failure. Furthermore, the parameters in both constitutive model and damage rule are identified based on experimental data. The comparison of the hysteresis loop of the first cycle and stable cycle with different strain amplitudes demonstrates that the Chaboche constitutive model provides high precision to predict the evolution of mechanical properties. Based on the reliable achieved constitutive model, LCF behaviour prediction with damage rule was executed successfully using FE model and gains a good agreement with the experiments. It is believed that the proposed FE method lays the foundation of structure analysis and rapid design optimization in further applications. 相似文献
14.
W. J. Hui C. Zhou Y. J. Zhang X. L. Zhao H. Dong 《Fatigue & Fracture of Engineering Materials & Structures》2016,39(9):1081-1091
The very high cycle fatigue properties of spring steel 60SiCrV7 for automotive suspension system with different hydrogen contents were studied by using ultrasonic fatigue testing and fatigue crack growth testing. The results show that the S–N curves exhibit continuous drop of fatigue lives and no obvious horizontal line exists. Similar fracture surface features were observed for all the specimens that failed mainly from internal inclusions with surrounding granular bright facet (GBF). Fatigue strength decreases remarkably with increasing hydrogen content. The applied stress intensity factor range at the periphery of GBF ΔKGBF is approximately proportional to 1/3 power of the square of GBF area. The average values of ΔKGBF for uncharged specimens are close to crack growth threshold ΔKth, which indicates that ΔKGBF could be regarded as the threshold value governing the beginning of stable fatigue crack propagation. The increase of hydrogen content tends to reduce ΔKGBF. 相似文献
15.
JALAJ KUMAR KARTIK PRASAD VIKAS KUMAR 《Fatigue & Fracture of Engineering Materials & Structures》2011,34(2):131-138
In the present work, evolution of damage under high‐temperature (823 K) low cycle fatigue loading condition in near α IMI‐834 titanium alloy has been studied. The in situ damage has been experimentally measured during cyclic deformation using the alternating current potential drop (ACPD) technique. The measured damage curve has been compared with the damage curves calculated through mechanical variables such as cyclic modulus and stress amplitude. The ACPD damage curve has been found most sensitive towards high‐temperature low cycle fatigue damage evolution. 相似文献
16.
Crack growth rates and microstructure feature of initiation region for very‐high‐cycle fatigue of a high‐strength steel 下载免费PDF全文
Yuanpei Hu Chengqi Sun Youshi Hong 《Fatigue & Fracture of Engineering Materials & Structures》2018,41(8):1717-1732
The S‐N data up to very‐high‐cycle fatigue (VHCF) regime for a high‐strength steel were obtained by fatigue tests under constant amplitude and variable amplitude (VA) via rotating bending and electromagnetic resonance cycling. Crack initiation for VHCF was from the interior of specimens, and the initiation region was carefully examined by scanning electron microscopy and transmission electron microscopy. Crack growth traces in the initiation region of fine‐granular‐area (FGA) were the first time captured for the specimens under VA cycling by rotating bending. The obtained crack growth rates in FGA were upwards to connect well with those in fish‐eye region available in the literature and were associated well with the calculated equivalent crack growth rates in FGA. The observations of profile samples revealed that FGA is a nanograin layer for the specimens under VA cycling, which is a new evidence to support the previously proposed “numerous cyclic pressing” model. 相似文献
17.
Use of an energy‐based/critical plane model to assess fatigue life under low‐cycle multiaxial cycles
Lei Gan Hao Wu Zheng Zhong 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(12):2694-2708
For engineering components subjected to multiaxial loading, fatigue life prediction is crucial for guaranteeing their structural security and economic feasibility. In this respect, energy‐based models, integrating the stress and strain components, are widely used because of their availability in fatigue prediction. Through employing the plastic strain energy concept and critical plane approach, a new energy‐based model is proposed in this paper to evaluate the low‐cycle fatigue life, in which the critical plane is defined as the maximum damage plane. In the proposed model, a newly defined NP factor κ* is used to quantify the nonproportional (NP) effect so that the damage parameter can be conveniently calculated. Moreover, a simple estimation method of weight coefficient is developed, which can reflect different contributions of shear and normal plastic strain energy on total fatigue damage. Experimental data of 10 kinds of materials are employed to assess the effectiveness of this model as well as three other energy‐based models. 相似文献
18.
S. Majumdar S. Roy K. K. Ray 《Fatigue & Fracture of Engineering Materials & Structures》2017,40(3):315-332
Fatigue performance of ferrite–martensite (FM) and ferrite–bainite (FB) dual‐phase (DP) steels used in automotive wheels has been compared in terms of (i) high‐cycle fatigue performance and failure mechanisms and (b) low‐cycle fatigue performance (Δεt/2 = 0.002 to 0.01) and associated deformation mechanisms. FBDP steel exhibits moderately better high‐cycle fatigue performance, owing to delay in microcrack initiation. In FBDP steel, microcracks initiate predominantly along ferrite grain boundaries, while that at FB interface is significantly delayed in comparison with FMDP steel, where few microcracks appear at FM interface even below the endurance limit. During low‐cycle fatigue, however, FMDP steel performs considerably better than FBDP steel till Δεt/2 ≤ 0.005 attributed to initial cyclic hardening, followed by cyclically stable behaviour exhibited by FMDP steel. In sharp contrast, at all Δεt/2 > 0.002, FBDP steel undergoes continuous cyclic softening. The latter may cause undesirable deformation of wheels in service. 相似文献
19.
A fatigue driving energy approach to high‐cycle fatigue life estimation under variable amplitude loading 下载免费PDF全文
Z. Peng H‐Z. Huang S‐P. Zhu H. Gao Z. Lv 《Fatigue & Fracture of Engineering Materials & Structures》2016,39(2):180-193
In this paper, a concept of fatigue driving energy is formulated to describe the process of fatigue failure. The parameter is taken as a combination of the fatigue driving stress and strain energy density. By assessing the change of this parameter, a new non‐linear damage model is proposed for residual life estimation within high‐cycle fatigue regime under variable amplitude loading. In order to consider the effects of loading histories on damage accumulation under such condition, the load interaction effects are incorporated into the new model, and a modified version is thus developed. Life predictions by these two models and Miner rule are compared using experimental data from literature. The results show that the proposed model gives lower deviations than the Miner rule, while the modified model shows better prediction performances than the others. Moreover, the proposed model and its modifications are ease of implementation with the use of S–N curve. 相似文献
20.
Xiangnan Pan Youshi Hong 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(9):1950-1964
The fatigue behaviour of a titanium alloy Ti‐6Al‐4V with equiaxed microstructure (EM) under different values of tensile mean stress or stress ratio (R) was investigated from high‐cycle fatigue (HCF) to very‐high‐cycle fatigue (VHCF) regimes via ultrasonic axial cycling. The effect of mean stress or R on the fatigue strength of HCF and VHCF was addressed by Goodman, Gerber, and Authors' formula. Three types of crack initiation, namely, surface‐with‐RA (rough area), surface‐without‐RA, and interior‐with‐RA, were classified. The maximum value of stress intensity factor (SIF) at RA boundary for R < 0 keeps constant regardless of R in HCF and VHCF regimes. The SIF range at RA boundary for R > 0 also keeps constant regardless of R in VHCF regime, but this value decreases linearly with the increase of R for surface RA cases. The microstructure observation at RA regions gives a new result of nanograin formation only in the cases of negative stress ratios for the titanium alloy with EM, which is explained by the mechanism of numerous cyclic pressing. 相似文献