首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fatigue is a governing design limit state for marine structures. Welded joints are important in that respect. The weld notch stress (intensity) distributions contain essential information and formulations have been established to obtain a total stress fatigue damage criterion and corresponding fatigue resistance curve; a total stress concept. However, the involved weld load carrying stress model does not provide the required estimates and trends for varying geometry dimensions and loading & response combinations. A new one has been developed and performance evaluation for T‐joints and cruciform joints in steel marine structures shows that in comparison with the nominal stress, hot spot structural stress and effective notch stress concept based results up to 50% more accurate fatigue design life time estimates can be obtained. Taking advantage of the weld notch stress formulations, the effective notch stress concept performance has improved adopting a stress‐averaged criterion rather than a fictitious notch radius‐based one.  相似文献   

2.
In fatigue design of welded joints, the local approach based on the notch stress intensity factors (NSIFs) assumes that the weld toe profile is a sharp V‐notch having a tip radius equal to zero, while the root side is a pre‐crack in the structure. The peak stress method (PSM) is an engineering, FE‐oriented application of the NSIF approach to fatigue design of welded joints, which takes advantage of the elastic peak stresses from FE analyses carried out by using a given mesh pattern, where the element type is kept constant and the average element size can be chosen arbitrarily within a given range. The meshes required for the PSM application are rather coarse if compared with those necessary to evaluate the NSIFs from the local stress distributions. In this paper, the PSM is extended for the first time to butt‐welded joints in steel as well as in aluminium alloys, by comparing a number of experimental data taken from the literature with the design scatter bands previously calibrated on results relevant only to fillet‐welded joints. A major problem in the case of butt‐welded joints is to define the weld bead geometry with reasonable accuracy. Only in few cases such geometrical data were available, and this fact made the application of the local approaches more difficult. Provided the local geometry is defined, the PSM can be easily applied: a properly defined design stress, that is, the equivalent peak stress, is shown (i) to single out the crack initiation point in cases where competition between root and toe failure exists and (ii) to correlate with good approximation all analysed experimental data.  相似文献   

3.
Weld bead geometry cannot, by its nature, be precisely defined. Parameters such as bead shape and toe radius vary from joint to joint even in well-controlled manufacturing operations. In the present paper the weld toe region is modelled as a sharp, zero radius, V-shaped notch and the intensity of asymptotic stress distributions obeying Williams’ solution are quantified by means of the Notch Stress Intensity Factors (NSIFs). When the constancy of the angle included between weld flanks and main plates is assured and the angle is large enough to make mode II contribution non-singular, mode I NSIF can be directly used to summarise the fatigue strength of welded joints having very different geometry. By using a large amount of experimental data taken from the literature and related to a V-notch angle of 135°, two NSIF-based bands are reported for steel and aluminium welded joints under a nominal load ratio about equal to zero. A third band is reported for steel welded joints with failures originated from the weld roots, where the lack of penetration zone is treated as a crack-like notch and units for NSIFs are the same as conventional SIF used in LEFM. Afterwards, in order to overcome the problem related to the variability of the V-notch opening angle, the synthesis is made by simply using a scalar quantity, i.e. the mean value of the strain energy averaged in the structural volume surrounding the notch tips. This energy is given in closed form on the basis of the relevant NSIFs for modes I and II and the radius RC of the averaging zone is carefully identified with reference to conventional arc welding processes. RC for welded joints made of steel and aluminium considered here is 0.28 mm and 0.12 mm, respectively. Different values of RC might characterise welded joints obtained from high-power processes, in particular from automated laser beam welding. The local-energy based criterion is applied to steel welded joints under prevailing mode I (with failures both at the weld root and toe) and to aluminium welded joints under mode I and mixed load modes (with mode II contribution prevailing on that ascribable to mode I). Surprising, the mean value of ΔW related to the two groups of welded materials was found practically coincident at 2 million cycles. More than 750 fatigue data have been considered in the analyses reported herein.  相似文献   

4.
We have determined theoretical notch coefficients with use of the fictitious radius in tube-tube and flange-tube welds. The parameter of normal and shear strain energy density in critical planes is applied for estimation of fatigue life under cyclic conditions of pure bending, pure torsion and combined proportional bending with torsion. The critical planes were determined with use of two methods based on the maximum parameters of, respectively, normal and shear strain energy density. __________ Translated from Problemy Prochnosti, No. 4, pp. 118–124, July–August, 2006.  相似文献   

5.
The paper investigates the fatigue strength of laser stake‐welded T‐joints subjected to reversed bending. The fatigue tests are carried out with the load ratio, R ≈ ?0.8. The experimental data is firstly analysed using the nominal stress approach and then by the J‐integral as the local fatigue strength parameter in the finite element (FE) assessment. The nominal stress approach demonstrated that the fatigue strength of the investigated T‐joints is lower than encountered for any other steel joint under reversed tensile loading. The results also showed that the fatigue strength of this joint under the load ratio R ≈ ?0.8 increases with respect to R = 0 bending by 22.6% in the case of the nominal stress approach and 13% in the case of the J‐integral approach. However, the slopes of the fatigue resistance curves for different load ratios appear very similar, suggesting that the load ratio has an insignificant influence to the slope. In contrast to the similar slopes, the scatter indexes were different. The nominal stress approach shows that the scatter index is 3.4 times larger for R ≈ ?0.8 than R = 0 bending. The J‐integral approach showed that the scatter index for R ≈ ?0.8 is only 67% larger than in the R = 0 case because the weld geometry is modelled in the FE analysis.  相似文献   

6.
The local average strain energy density (SED) approach has been proposed and elaborated by Lazzarin for strength assessments in respect of brittle fracture and high‐cycle fatigue. Pointed and rounded (blunt) V‐notches subjected to tensile loading (mode 1) are primarily considered. The method is systematically extended to multiaxial conditions (mode 3, mixed modes 1 and 2). The application to brittle fracture is documented for PMMA flat bar specimens with pointed or rounded V‐notches inclusive of U‐notches. Results for other brittle materials (ceramics, PVC, duraluminum and graphite) are also recorded. The application to high‐cycle fatigue comprises fillet‐welded joints, weld‐like shaped and V‐notched base material specimens as well as round bar specimens with a V‐notch. The relation of the local SED concept to comparable other concepts is investigated, among them the Kitagawa, Taylor and Atzori–Lazzarin diagrams, the Neuber concept of fictitious notch rounding applied to welded joints and also the J‐integral approach. Alternative details of the local SED concept such as a semicircular control volume, microrounded notches and slit‐parallel loading are also mentioned. Coarse FE meshes at pointed or rounded notch tips are proven to be acceptable for accurate local SED evaluations. The peak stress method proposed by Meneghetti, which is based on a notch stress intensity factor consideration combined with a globally even coarse FE mesh and is used for the assessment of the fatigue strength of welded joints, is also presented.  相似文献   

7.
In the present work, a simple fatigue life prediction approach is proposed using fracture mechanics for laser beam welded Al‐alloy joints under variable amplitude loading. In the proposed approach, variable amplitude loading sequence is transformed into an equivalent constant amplitude loading using the root mean square model. The crack growth driving force K* is chosen to describe the fatigue crack growth rate. The influences of residual stress and its relaxation on fatigue life are taken into account in the proposed approach. The fatigue lives are also predicted using the traditional approach based on the S‐N curves and the rainflow counting method. The predicted results show that the proposed approach is better than the traditional approach.  相似文献   

8.
Fatigue damage of butt‐welded joints is investigated by a damage mechanics method. First, the weld‐induced residual stresses are determined by using a sequentially coupled thermo‐mechanical finite element analysis. The plastic damage of material is then calculated with the use of Lemaitre's plastic damage model. Second, during the subsequent fatigue damage analysis, the residual stresses are superimposed on the fatigue loading, and the weld‐induced plastic damage is considered as the initial damage via an elasto‐plastic fatigue damage model. Finally, the fatigue damage evolution, the relaxation of residual stress, and the fatigue lives of the joints are evaluated using a numerical implementation. The predicted results agree well with the experimental data.  相似文献   

9.
In this paper, a coupled reliability method for structural fatigue evaluation considering load shedding is first proposed based on probabilistic fracture mechanics in which the uncertainties of the structural parameters are taken into account. Then, the method is applied to predict the fatigue reliability of the T‐welded structure to the case of considering load shedding or not. The compared results show that by considering the load shedding, the structural fatigue reliability might be improved with less conservativeness. The influence rules of the load‐shedding coefficient on the fatigue failure probability of the T‐welded component are investigated, and some interesting results are obtained. That is, the influences of load‐shedding coefficient on the fatigue failure probability can be divided into three regions, namely the high, medium and low fatigue failure areas. The last area is the most intriguing when we try to design a T‐welded structure. The thickness of T‐welded structure along the crack propagation direction is found to be one of the important design variables for the design of fatigue reliability, in which the low‐fatigue failure zone is used as one of the reliability constraints. The basic design frame of T‐welded structure is established to constrain the fatigue failure probability within the low‐fatigue failure area.  相似文献   

10.
This paper presents the results and evaluation of the multiaxial fatigue behaviour of laserbeam‐welded overlapped tubular joints made from the artificially hardened aluminium alloy AlSi1MgMn T6 (EN AW 6082 T6) under multiaxial loadings with constant and variable amplitudes. Several fatigue test series under pure axial and pure torsional loadings as well as combined axial and torsional proportional and non‐proportional loadings have been carried out in the range of 2·104 to 2·107 cycles. The assessment of the investigated thin‐walled joints is based on a local notch stress concept. In this concept the fatigue critical area of the weld root is substituted by a fictitious notch radius rref = 0.05 mm. The equivalent stresses in the notch, considering especially the fatigue life reducing influence of non‐proportional loading in comparison to proportional loading, were calculated by a recently developed hypothesis, which is called the Stress Space Curve Hypothesis (SSCH). This hypothesis is based on the time evolution of the stress state during one load cycle. In addition, the fatigue strength evaluation of multiaxial spectrum loading was carried out using a modified Gough‐Pollard algorithm.  相似文献   

11.
Fatigue crack propagation (FCP) under constant and variable amplitude loading in base metal (BM), weld metal (WM) and heat affected zone (HAZ) of longitudinal welded joints of an API X‐70 pipeline steel was investigated. Constant amplitude loading tests were performed at R = 0.1 and 0.5, whereas for variable amplitude testing single peak tensile overloads (OLs) alternating between 75 and 100% of maximum load were applied at 2.5 mm intervals in crack growth. Results of SE(B) specimens tested under constant and variable amplitude loading revealed that BM, WM and HAZ regions subjected to R = 0.5 and low ΔK‐values presented the highest crack growth rates. At higher ΔK values FCP rates in all the studied regions were similar and the R effect on FCP rate was no more observed. Crack growth retardation due to OLs was observed at the three studied regions, showing a decrease on the FCP delay with a decreasing on ΔK.  相似文献   

12.
This paper aims at proposing a new fatigue life estimation model that is preferably adapted to welded joints subjected to multiaxial loading. First, a mesh‐size insensitive structural stress is defined that enables to characterize the stress concentration effect appropriately. Second, the multiaxial stress state and loading path influence are taken into account in the lifetime prediction model by adopting a suitable critical plane method, originally proposed by Carpinteri and co‐authors. Experimental verification is conducted for a given welded joint geometry under different loading conditions, including uniaxial, torsional and multiaxial loads. The reliability and effectiveness of the new method are validated through substantive fatigue testing data.  相似文献   

13.
Ahead of sharp V‐notches, residual stresses, arising from the solidification of a fusion zone, have the same asymptotic nature of the stress field induced by mechanical loads. This stress field significantly affects the engineering properties of structural components, notably fatigue life and corrosion resistance of welded joints. Tensile residual stresses can reduce the fatigue strength of welded joints particularly in the high‐cycle regime, where no stress redistribution due to local plasticity phenomena is expected to be present. The aim of this work is to analyse, by means of the numerical simulation, the residual stress redistribution near a V‐notch tip induced by cyclic loads and to propose a method, based on the local strain energy approach, for the fatigue resistance estimation of pre‐stressed components. The numerical solutions of the problem were carried out under the hypothesis of generalized plane strain conditions by means of SYSWELD and SYSTUS codes.  相似文献   

14.
A fatigue strength parameter for (seam-)welded joints is presented which is based on the averaged elastic strain energy density (SED) criterion applied to full circle and semicircular ‘control volumes’, the latter centred by the expected crack path. The parameter is applicable both at weld toes and weld roots, at least in the medium-cycle and high-cycle fatigue range where elastic conditions are prevailing. Based on a rectangular slit-plate model representing the weld root and analysed by the finite element method, the effect of the following influencing conditions is investigated: tension loading (mode 1) and shear loading (mode 2), slit-parallel tension loading acting on a rounded slit tip, pointed slit tip versus small-size key-hole at the slit tip, semicircle and narrow sector versus full circle or full sector SED evaluations, distortional SED versus total SED under plane strain conditions. The following conclusions are drawn from the numerical results. The SED approach should be based on the full circle or full sector evaluation of the total SED, with R0 = 0.28 mm for steels. In cases of a markedly unilateral angular SED distribution, the semicircle evaluation centred by the expected crack path is more appropriate. The use of small-size reference notches instead of pointed notches provides no advantage. The endurable remote stresses for fatigue-loaded welded joints according to the SED approach are well in correspondence with those according to the fictitious notch rounding approach. High accuracy of the results can already be achieved with a rough meshing at the pointed notches.  相似文献   

15.
16.
Weldments geometry with failures occurring at the weld toe or at the weld root cannot, by its nature, be precisely defined. Parameters such as bead shape and toe or root radius vary from joint to joint even in well-controlled manufacturing operations. The worst case configuration can be achieved by modelling as a sharp, zero radius, notch both the toe and the weld root. The intensity of asymptotic stress distributions obeying Williams’ solution is quantified by means of the Notch Stress Intensity Factors (NSIFs). For steel welded joints with failures originated from the weld roots, where the lack of penetration zone is treated as a crack-like notch, units for NSIFs are the same as conventional SIFs used in LEFM. The different dimensionality of NSIFs for different notch opening angles does not allow a direct comparison of failures occurring at the weld toe or at the weld root. In order to overcome the problem related to the variability of the V-notch opening angle, a simple scalar quantity, i.e. the value of the strain energy density (SED) averaged in the structural volume surrounding the notch tip, has been introduced. This energy is given in closed form on the basis of the relevant NSIFs for modes I, II and III. The radius Rc of the averaging zone is carefully identified with reference to conventional arc welding processes being equal to 0.28 mm for welded joints made of steel.The local-energy based criterion is applied here to steel welded rollers produced by Rulmeca and subjected to prevailing mode I (with failures at the weld root). The aim of the paper is firstly to describe the employed methodology for the fatigue assessment and secondly to show the first synthesis of fatigue data by means of local SED for a specific geometry.  相似文献   

17.
In this paper, a concept of fatigue driving energy is formulated to describe the process of fatigue failure. The parameter is taken as a combination of the fatigue driving stress and strain energy density. By assessing the change of this parameter, a new non‐linear damage model is proposed for residual life estimation within high‐cycle fatigue regime under variable amplitude loading. In order to consider the effects of loading histories on damage accumulation under such condition, the load interaction effects are incorporated into the new model, and a modified version is thus developed. Life predictions by these two models and Miner rule are compared using experimental data from literature. The results show that the proposed model gives lower deviations than the Miner rule, while the modified model shows better prediction performances than the others. Moreover, the proposed model and its modifications are ease of implementation with the use of S–N curve.  相似文献   

18.
The averaged strain energy density over a well‐defined control volume was employed to assess the fracture of U‐notched specimens made of tungsten–copper functionally graded materials under prevalent mode II loading. The boundary of control volume was evaluated by using a numerical method. Power law function was employed to describe the mechanical properties (elasticity modulus, Poisson's ratio, fracture toughness and ultimate tensile stress) through the specimen width. The effect of notch tip radius and notch depth on notch stress intensity factors and mode mixity parameter χ were assessed. In addition, a comparison based on fracture load between functionally graded and homogeneous W–Cu was made. Furthermore, in this research, it was shown that the mean value of the strain energy density over the control volume can be accurately determined using coarse meshes for functionally graded materials.  相似文献   

19.
20.
The maximum tangential strain energy density (MTSED) criterion was modified by taking the influences of stress intensity factors and T‐stress into consideration for combined mode I–III brittle fracture. Furthermore, the Poisson's ratio and T‐stress influencing the fracture characteristics of cracked components were discussed by using the extended MTSED criterion. Moreover, the predicted values of this extended MTSED criterion and some testing results were comparatively analysed. The results indicate that the Poisson's ratio and T‐stress have no impact on the out‐of‐plane initiation angle; however, their effects on fracture resistance ratios are significant especially for pure mode III. A positive T‐stress increases the fracture resistance ratio, and it is opposite for a negative T‐stress. The predicted values calculated by the extended MTSED criterion agree very well with the testing data obtained with edge‐notched disc bend samples especially for pure mode III case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号