首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most powerful criteria to predict the critical fracture load in plates with notches is the strain‐energy density averaged over a well‐defined control volume ahead of the notch tip. Although the averaged strain‐energy density (ASED) criterion has been proposed for homogeneous materials, it has been shown in this paper that this criterion can also be applied for non‐homogeneous materials, especially for functionally graded materials (FGMs). A numerical method has been used to evaluate the control volume boundary, the averaged strain‐energy density over the control volume, and also the critical fracture load in FGMs under mode I loading. A new set of experimental results on fracture of blunt V‐notched samples made of austenitic–martensitic functionally graded steel under mode I loading have been provided.  相似文献   

2.
The local average strain energy density (SED) approach has been proposed and elaborated by Lazzarin for strength assessments in respect of brittle fracture and high‐cycle fatigue. Pointed and rounded (blunt) V‐notches subjected to tensile loading (mode 1) are primarily considered. The method is systematically extended to multiaxial conditions (mode 3, mixed modes 1 and 2). The application to brittle fracture is documented for PMMA flat bar specimens with pointed or rounded V‐notches inclusive of U‐notches. Results for other brittle materials (ceramics, PVC, duraluminum and graphite) are also recorded. The application to high‐cycle fatigue comprises fillet‐welded joints, weld‐like shaped and V‐notched base material specimens as well as round bar specimens with a V‐notch. The relation of the local SED concept to comparable other concepts is investigated, among them the Kitagawa, Taylor and Atzori–Lazzarin diagrams, the Neuber concept of fictitious notch rounding applied to welded joints and also the J‐integral approach. Alternative details of the local SED concept such as a semicircular control volume, microrounded notches and slit‐parallel loading are also mentioned. Coarse FE meshes at pointed or rounded notch tips are proven to be acceptable for accurate local SED evaluations. The peak stress method proposed by Meneghetti, which is based on a notch stress intensity factor consideration combined with a globally even coarse FE mesh and is used for the assessment of the fatigue strength of welded joints, is also presented.  相似文献   

3.
The paper deals with the multi‐axial fatigue strength of notched specimens made of 39NiCrMo3 hardened and tempered steel. Circumferentially V‐notched specimens were subjected to combined tension and torsion loading, both in‐phase and out‐of‐phase, under two nominal load ratios, R=?1 and R= 0, also taking into account the influence of the biaxiality ratio, λ=τaa. The notch geometry of all axi‐symmetric specimens was a notch tip radius of 0.1 mm, a notch depth of 4 mm, an included V‐notch angle of 90° and a net section diameter of 12 mm. The results from multi‐axial tests are discussed together with those obtained under pure tension and pure torsion loading on plain and notched specimens. Furthermore the fracture surfaces are examined and the size of non‐propagating cracks measured from some run‐out specimens at 5 million cycles. Finally, all results are presented in terms of the local strain energy density averaged in a given control volume close to the V‐notch tip. The control volume is found to be dependent on the loading mode.  相似文献   

4.
The averaged value of the strain energy density over a well-defined volume is used to predict the static strength of U-notched specimens under mixed-mode conditions due to combined bending and shear loads. The volume is centered in relation to the maximum principal stress present on the notch edge, by rigidly rotating the crescent-shaped volume already used in the literature to analyse U- and V-shaped notches subject to mode I loading. The volume size depends on the ultimate tensile strength σ u and the fracture toughness K IC of the material. In parallel, an experimental programme was performed. All specimens are made of polymethyl-metacrylate (PMMA), a material which exhibits quasi-brittle behaviour at -60°C. Good agreement is found between experimental data for the critical loads to failure and theoretical predictions based on the constancy of the mean strain energy density over the control volume.  相似文献   

5.
The stress intensity factor concept for describing the stress field at pointed crack or slit tips is well known from fracture mechanics. It has been substantially extended since Williams' basic contribution (1952) on stress fields at angular corners. One extension refers to pointed V‐notches with stress intensities depending on the notch opening angle. The loading‐mode‐related simple notch stress intensity factors K1, K2 and K3 are introduced. Another extension refers to rounded notches with crack shape or V‐notch shape in two variants: parabolic, elliptic or hyperbolic notches (‘blunt notches’) on the one hand and root hole notches (‘keyholes’ when considering crack shapes) on the other hand. Here, the loading‐mode‐related generalised notch stress intensity factors K1ρ, K2ρ and K3ρ are defined. The concepts of elastic stress intensity factor, notch stress intensity factor and generalised notch stress intensity factor are extended into the range of elastic–plastic (work‐hardening) or perfectly plastic notch tip or notch root behaviour. Here, the plastic notch stress intensity factors K1p, K2p and K3p are of relevance. The elastic notch stress intensity factors are used to describe the fatigue strength of fillet‐welded attachment joints. The fracture toughness of brittle materials may also be evaluated on this basis. The plastic notch stress intensity factors characterise the stress and strain field at pointed V‐notch tips. A new version of the Neuber rule accounting for the influence of the notch opening angle is presented.  相似文献   

6.
The present paper deals with the effect of notch depth on J-integral and critical fracture load in a plate made of functionally graded aluminum–silicone carbide composite (Al–SiC) with U-notch under bending. The weight fraction of SiC particles varies from 0% to 20% through the specimen width. Using three criteria namely mean stress (MS), point stress (PS), and averaged strain-energy density (ASED), the critical fracture load has been predicted and its variation with respect to the notch depth has been studied. A comparison of the J-integral between functionally graded and homogeneous Al–SiC composite were made, where the notch tip in the functionally graded material is situated in a layer with same mechanical properties as the homogeneous composite. The results indicated that in the case where the notch scene is toward brittleness increment the critical J-integral in functionally graded material (FGM) is larger than that of in homogeneous material with the same mechanical properties at the notch tip. Therefore, FGM is more convenient than homogeneous material against fracture.  相似文献   

7.
The volume fraction of constituent particles in functionally graded materials (FGM) varies continuously and functionally, and its optimal tailoring could be made by the numerical optimization incorporated with the finite element method. In such a case, the mesh density in finite element discretization of the volume fraction field influences the final design quality such that the further objective function reduction requires the refinement of volume fraction meshes. However, the uniform refinement of the volume fraction mesh is not effective, from the numerical point of view, particularly when the finite difference scheme is employed. This numerical inefficiency could be resolved by locally increasing the mesh density only where more volume‐fraction flexibility (i.e. more mesh density) is required. In this paper, we propose an effective volume‐fraction optimization procedure by applying the irregular h‐refinement to the volume fraction discretization. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Different from Neuber's rule or Glinka's energy method which are always adopted to characterize the notch tip field under elastoplastic condition, in this paper, the strain energy rate density (SERD) rule is used for viscoplastic materials. In particular, based on the definition of generalized notch stress intensity factor (G‐NSIF) for sharp V‐notch in viscoplastic solids, the concept of SERD for sharp V‐notch in viscoplastic solids is presented. Subsequently, by taking as a starting point the SERD, the averaged strain energy density (SED) for sharp V‐notch in viscoplastic solids is derived with integration of time. The fracture toughness relation between sharp V‐notch specimens and crack specimen in viscoplastic materials is given based on the transformation of SERD. A numerical approach is presented to compute the SERD and SED based on finite element method. Some crucial comments on the G‐NSIF have been discussed. Some typical solutions for SERD and SED for sharp V‐notched specimens are investigated.  相似文献   

9.
The interaction integral is a conservation integral that relies on two admissible mechanical states for evaluating mixed‐mode stress intensity factors (SIFs). The present paper extends this integral to functionally graded materials in which the material properties are determined by means of either continuum functions (e.g. exponentially graded materials) or micromechanics models (e.g. self‐consistent, Mori–Tanaka, or three‐phase model). In the latter case, there is no closed‐form expression for the material‐property variation, and thus several quantities, such as the explicit derivative of the strain energy density, need to be evaluated numerically (this leads to several implications in the numerical implementation). The SIFs are determined using conservation integrals involving known auxiliary solutions. The choice of such auxiliary fields and their implications on the solution procedure are discussed in detail. The computational implementation is done using the finite element method and thus the interaction energy contour integral is converted to an equivalent domain integral over a finite region surrounding the crack tip. Several examples are given which show that the proposed method is convenient, accurate, and computationally efficient. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
针对组分材料体积分数任意分布的聚合物功能梯度材料,研究其在蠕变加载条件下Ⅰ型裂纹应力强度因子(SIFs)和应变能释放率的时间相依特征。由Mori-Tanaka方法预测等效松弛模量,在Laplace变换域中采用梯度有限元法和虚拟裂纹闭合方法计算断裂参数,由数值逆变换得到物理空间的对应量。分析边裂纹平行于梯度方向的聚合物功能梯度板条,分别考虑均匀拉伸和三点弯曲蠕变加载。结果表明,聚合物梯度材料应变能释放率随时间增加,其增大的程度与黏弹性组分材料体积分数正相关;材料的非均匀黏弹性性质产生应力重新分布,导致裂纹尖端应力场强度随时间变化,当裂纹位于黏弹性材料含量较低的一边时,应力强度因子随时间增加,反之,随时间减小。而且,材料的应力强度因子与时间相依的变化范围和体积分数分布以及加载方式有关,当体积分数接近线性分布时,变化最明显,三点弯曲比均匀拉伸的变化大。SIFs随时间的延长增加或减小、加剧或减轻裂纹尖端部位的“衰坏”,表明黏弹性功能梯度裂纹体的延迟失稳需要联合采用应力强度因子与应变能释放率作为双控制参数。  相似文献   

11.
It is widely recognized that the accuracy of notch fatigue calculations can be improved significantly when those calculations are based on the elastic‐plastic response strain at the notch root, as opposed to the remotely applied loads or stresses. Two of the most widely used approximations for this response are Neuber's rule and Glinka's equivalent strain energy density method. In the present work, a survey of some of the many published evaluations of these methods was first conducted, and then, additional detailed comparisons with elastic‐plastic finite element analyses for a series of semicircular and V‐shaped notch configurations were performed. Based on the observed limitations of both the Neuber and Glinka approaches, and with the guidance of the elastic‐plastic finite element results, a new (and more robust) approach for the estimation of notch response strains is proposed. This approach calls for the definition of a generalized notch response curve (GNRC), which is dependent on both the material stress–strain curve and the notch geometry. Once defined, the GNRC allows the determination of the response strain for any applied stress.  相似文献   

12.
As it is well known the Poisson's effect in a cracked plate subjected to anti‐symmetric plane loading leads to the generation of a coupled out‐of‐plane singular mode. Recent theoretical and numerical analyses have shown that this effect is present also in plates weakened by sharp V‐notches and might play a role in failure initiation phenomena of notched plates subjected to Mode II loading, especially in the presence of a large notch opening angle. Dealing with blunt notches with a large notch radius, and not just with sharp notches, the presence or not of an out‐of‐plane mode does not appear to have been systematically investigated in the past. The main aim of this work is to confirm the existence of the stress field associated with the out‐of‐plane mode (Mode O) and to describe its main features in the presence of a notch radius significantly different from zero. The analyses include U‐notches, as well as circular and elliptic holes. The strain energy density in a 3D control volume is utilized to identify the most critical zone (with respect to failure initiation) through the plate thickness at the notch tip.  相似文献   

13.
This paper investigates the effects of the first non‐singular stress terms on the fracture assessment of sharp V‐notches under mixed mode loading. First, numerical studies have been performed on a fracture test configuration called single V‐notched ring (SVR) specimen. Then, the notch stress intensity factors as well as the coefficients of the first non‐singular stress terms, which are vital parameters in brittle fracture of V‐notched components, were calculated via a finite element over‐deterministic algorithm for a wide range of loading and geometry conditions. The obtained results demonstrate that the SVR specimen is able to provide a complete range of mode mixities from pure mode I to pure mode II loading conditions. The numerical results, next, have been converted to dimensionless parameters and are illustrated in several graphs. Indeed, these graphs can be easily employed by the engineers for rapid calculation of the corresponding notch stress intensity factors and the coefficients of the first non‐singular stress terms in the SVR specimen. The obtained fracture parameters are then submitted to the maximum tangential stress criterion to assess the effects of the first non‐singular terms on fracture behaviour of the specimen. Finally, an experimental study has been performed on the SVR specimen made of Nayriz Marble rock for two notch angles with a complete range of mode mixities. The obtained experimental data confirm the significant role of the first non‐singular stress terms. In fact, these results show that considering only the singular stress terms may induce an average error of 38% in the predicted fracture loads, which can be decreased to about 12% just by adding the contribution of the first non‐singular terms to the maximum tangential stress criterion.  相似文献   

14.
The main purpose of the paper is twofold. First, to provide a new set of experimental results on fracture of U-notched samples, made of two different materials; second, to apply a fracture criterion based on the strain energy density (SED) averaged over a control volume to assess the fracture load of blunt-notched components under three point bending. Two different materials are considered in the tests: a composite material (Al–15%SiC) tested at room temperature and a steel with a ferritic–pearlitic structure tested at −40 °C. All samples are weakened by U-notches characterized by different values of notch root radius and notch depth. The theoretical loads to failure as determined according to the SED criterion are compared with the experimental data from more than 40 static tests and with a SED-based scatter band recently reported in the literature for a number of materials exhibiting a brittle behaviour under static loads.  相似文献   

15.
In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic–perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near‐tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T ‐stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T ‐stress becomes more negative irrespective of lattice orientation. Also, the near‐tip field for a range of constraint levels can be characterized by two‐parameters such as KT or JQ as in isotropic plastic solids.  相似文献   

16.
The fatigue behaviour of an Al–Mg–Si alloy was studied using notched specimens. Fatigue tests were conducted at two stress ratios R= 0 and R= 0.4 on thin plates with a central hole. Constant and block variable loading amplitudes were applied to the specimens using a servo‐hydraulic machine. The applicability of the local strain approach method to the prediction of the fatigue life was investigated for this type of discontinuity. Two methods, the equivalent strain energy density approach and a modified stress–strain intensity field approach, were used to predict the fatigue strength. For the second one an elastic–plastic finite element analysis was carried out in order to obtain the local strain and stress distributions near the notch root. Based on Miner's rule an equivalent stress was used to correlate the fatigue lives for the variable amplitude histories. The experimental results were compared with the predicted results obtained by the two methods investigated and better agreement was found with the stress–strain field intensity approach, while the strain energy approach gave more conservative results. Miner's rule gives a good correlation between the variable amplitude and constant amplitude results.  相似文献   

17.
Mixed‐mode dynamic fracture behaviour of cast aluminium alloy ZL205A thin plates with narrow U‐notch was studied by split Hopkinson tensile bar apparatus. Specimens with different loading angles were designed to realize different fracture modes. The same loading condition was maintained during the tests. Recovery specimens show that crack propagates along the notch direction. Force–elongation relations show that with the loading angle increasing, the fracture force increases while the final elongation decreases. Deformation and fracture process was observed by a high‐speed camera. Displacement distribution around the crack was calculated through digital image correlation technique. Based on the photos and displacement results, initiation time of the crack was derived. Besides, two stress components (normal stress and shear stress) applied on the fracture surface were investigated. Results show that crack initiation stresses at different loading angles satisfy the ellipse equation. Pure mode I and II fracture stresses are 425.3 and 236.7 MPa, respectively. Furthermore, specific fracture energy of different specimens was calculated. The energy data vary with loading angle and located on an approximate upward parabolic curve. From the curve, the minimum specific fracture energy of the thin plate specimen is 42.0 kJ/m2 under loading angle of 76.3°.  相似文献   

18.
The main purpose of this research is to re-analyse experimental results of fracture loads from blunt V-notched samples under mixed mode (I + II) loading considering different combinations of mode mixity ranging from pure modes I to II. The specimens are made of polymethyl-metacrylate (PMMA) and tested at room temperature. The suitability of fracture criterion based on the strain energy density (SED) when applied to these data is checked in the paper. Dealing with notched samples, characterized by different notch angles and notch root radii, the SED criterion used in combination with the concept of local mode I, valid in the proximity of the zone of crack nucleation, permits to provide a simple approximate but accurate equation for the SED in the control volume. This proposal unifies predictions for the experimental results obtained under modes I, II and mixed mode loading.  相似文献   

19.
20.
The maximum tangential strain energy density (MTSED) criterion was modified by taking the influences of stress intensity factors and T‐stress into consideration for combined mode I–III brittle fracture. Furthermore, the Poisson's ratio and T‐stress influencing the fracture characteristics of cracked components were discussed by using the extended MTSED criterion. Moreover, the predicted values of this extended MTSED criterion and some testing results were comparatively analysed. The results indicate that the Poisson's ratio and T‐stress have no impact on the out‐of‐plane initiation angle; however, their effects on fracture resistance ratios are significant especially for pure mode III. A positive T‐stress increases the fracture resistance ratio, and it is opposite for a negative T‐stress. The predicted values calculated by the extended MTSED criterion agree very well with the testing data obtained with edge‐notched disc bend samples especially for pure mode III case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号