首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Materials Letters》2004,58(17-18):2326-2330
HAuCl4 was reduced by ethylene glycol, in the presence of polyvinylpyrrolidone (PVP) under microwave (MW) heating in a continuous wave (CW) mode for 2 min. Dominant products were polygonal nanoplates and close-to-spherical nanoparticles of gold. In addition, small amounts of single crystalline gold nanorods and nanowires (0.5–3% of total number of products) with diameters of 20–100 nm and lengths of 0.6–5 μm were produced. The diameter and length of gold nanorods and nanowires could be controlled by changing the HAuCl4·4H2O/PVP ratio. The formation mechanism of anisotropic gold nanostructures was discussed.  相似文献   

2.
In this paper, a new application of equal channel angular pressing (ECAP) for fabrication of Cu–Al bimetallic tubes is presented. For the evaluation of ECAP effects, the microstructure and micro-hardness of samples are considered. To investigate of bonding properties of Cu–Al tubes, optical microscopy and shear strength testing were used. In addition, the effect of friction coefficient and thickness on applied force was evaluated by numerical analysis. The results from the experiments indicated that the hardness of Cu and Al increased by 156.8 and 129%, respectively. Also, the average Cu grain size after three passes fell from 62.5 to 11.2 µm. Finally, Cu and Al tubes were well interconnected as a bimetallic tube at higher passes.  相似文献   

3.
Abstract

Identification of the elastoplastic material model for C–Mn steel, using finite element model of micro-indentation test developed by the authors and proposed algorithm of inverse analysis, is one of the objectives of the project. The micro-indentation experiment is widely described in the present paper, especially those parts, which are meaningful in getting input data for direct, further application in the numerical model of micro-indentation test and in the inverse procedure. Finite element solution connected with the inverse algorithm, which is based on the simplex method, is used to search for the unknown parameters of material model. Validation of the developed inverse algorithm is the particular objective of the present work. The present paper shows that material model determined using the inverse analysis is in agreement with that obtained from the tensile test. The results coincide also with the data available in the literature.  相似文献   

4.
B CHEN  S NAGARAJAIAH 《Sadhana》2013,38(4):557-569
Structural damage will change the dynamic characteristics, including natural frequencies, modal shapes, damping ratios and modal flexibility matrix of the structure. Modal flexibility matrix is a function of natural frequencies and mode shapes and can be used for structural damage detection and health monitoring. In this paper, experimental modal flexibility matrix is obtained from the first few lower measured natural frequencies and incomplete modal shapes. The optimization problem is then constructed by minimizing Frobenius norm of the change of flexibility matrix. Gauss–Newton method is used to solve the optimization problem, where the sensitivity of flexibility matrix with respect to structural parameters is calculated iteratively by only using the first few lower modes. The optimal solution corresponds to structural parameters which can be used to identify damage sites and extent. Numerical results show that flexibility-based method can be successfully applied to identify the damage elements and is robust to measurement noise.  相似文献   

5.
6.
Chitosan (CHS)hyaluronate (HA) double-walled microspheres were prepared by emulsification-coacervation method. Tripolyphosphate (TPP) acted as ion crosslinker. The effects of oil/water volume ratio, surfactant, solution pH, TPP concentration, HA concentration, and emulsification time on microspheres fabrication and morphology were examined by Zeta (ζ) potential, Scanning electron microscopy (SEM) and Fourier-transform infrared spectrometry (FT-IR). It was found that TPP concentration, solution pH, surfactant and emulsification time were crucial factors for microspheres fabrication. Spherical microspheres with smooth surface were formed when TPP concentration was 8% or higher. The optimal pH for microspheres formation ranged from 6.0 to 7.0. As for surfactant, the microspheres obtained when span80 was applied alone were shapelier compared with those obtained when both span80 and tween80 were applied. With insufficient emulsification time, vacuous microcapsules, but not compact microspheres were formed. In addition, oil/water volume ratio and HA concentration also affected the microspheres morphology, but less importantly.  相似文献   

7.
The simulation of the metal forming processes requires accurate constitutive models to describe the material behaviour at finite strain taking into account several conditions. The choice of a rheological model and the determination of its parameters should be made from a test that generates such conditions. The major difficulty encountered is that there is no experimental test satisfying all these criteria. The use of more than one test seems more and more essential, and it is utilized to characterize the rheological behaviour at operating conditions that correspond to metal forming applications. An Inverse analysis is then considered. Therefore, the difficulty lies within the long computing time taken when an optimization procedure is coupled with a finite element computation (FEC) to identify the material parameters. In order to solve the computing time problem, this paper proposes a hybrid identification method based on finite elements, neural network computations and genetic algorithm (GA) of an elasto-plastic behaviour model. The strategy suggested is then applied to identify the Karafillis and Boyce criterion and the Voce parameters model of the Stainless Steel AISI 304 using two tests (plane tensile test and bulge test with a circular die) at the same time.  相似文献   

8.
We developed a novel sol–gel method to prepare transparent conductive Al-doped ZnO (AZO) thin film at low temperature. The AZO nanocrystals were prepared by a solvothermal method and then they were dispersed in the monoethanolamine and methanol to form AZO colloids. A (002)-oriented ZnO thin film was used as a nucleation layer to induce the (002)-oriented growth of AZO thin films. The AZO thin films were prepared on Si(100) and fused quartz glass substrates with the (002)-oriented ZnO nucleation layer and annealed at 400 °C for 60 min. All AZO thin films showed (002) orientation. For electrical and optical measurements, the films deposited on glass substrates were post-annealed at 400 °C for 30 min in forming gas (100 % H2) to improve their conductivity. These samples had high transparency in the visible wavelength range, and also showed good conductivity. A 0.2 mol L?1 AZO solution with 3 at.% Al content was heated in a Teflon autoclave at 160 °C for 30 min to form AZO nanocrystals, and then the AZO nanocrystals were suspended in the MEA and methanol to obtain the stable AZO colloid. The Al content in the AZO nanocrystals was 2.7 at.%, and the high Al doping coefficient was mainly attributed to the formation of AZO nanocrystals in the autoclave. The AZO thin film using this colloid had the lowest resistivity of 3.89 × 10?3 Ω cm due to its high carrier concentration of 3.29 × 1020 cm?3.  相似文献   

9.
Conclusions The cited data on error components in measuring the field-strength lead to the conclusions that the reference field (provided that the distances are measured with an error of ±2%) can be determined with an error of 6%, at frequencies up to 150 MHz, and of ±7% in the range from 150 to 400 MHz. The error in determining the resulting field-strength is smaller for small angles of elevation, since the beam reflected from the ground has a substantial effect on the value of the field.  相似文献   

10.
A new intermetallic phase has been discovered in the Ti–Al–Fe system. It was first found in a commercial ferrotitanium alloy and then confirmed in a specially prepared experimental alloy. Its crystal structure and chemical composition were investigated using various transmission electron microscopy (TEM) techniques, namely selected area and convergent beam electron diffraction, high-resolution lattice imaging, energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy (EELS). TEM investigations were complemented by other characterization techniques—scanning electron microscopy, electron-probe microanalysis with wavelength spectrometers, X-ray diffraction and scanning Auger microscopy, as well as quantitative metallography and microhardness measurements. The compound contains 68–74 at.% Ti, 20–24 at.% Fe and 3.5–7 at.% Al. Its crystal lattice is body-centred orthorhombic with periods a ≈ b and c/a ≈ 1.04. The lattice parameters are about four times larger than those of β-Ti (bcc with a = 0.325 nm) and of the TiFe intermetallic (CsCl-type structure with a = 0.298 nm). Apparently, the crystal unit cell of the compound is composed of 4 × 4 × 4 body-centred subcells and contains 128 atoms; the Pearson symbol of the crystal structure is oI128. The new phase was designated β2, thus hinting at its possible relation to β-Ti.
V. Y. GertsmanEmail:
  相似文献   

11.
Nickel oxide nanoparticles have been synthesized in the presence of agarose polysaccharide by sol–gel method. The structure, morphology, optical and magnetic properties of the product was examined by X-ray diffraction, transmission electron microscopy, UV–visible spectrophotometer and superconducting quantum interference device magnetometer. The result of thermogravimetric analysis of the precursor product showed that the proper calcination temperature was 400 °C. X-ray diffraction result revealed that the obtained product was nickel oxide with face-centered cubic structure. TEM image demonstrated that the nickel oxide nanoparticles have spherical shape with size around 3 nm. Analysis of FTIR spectra confirmed the composition of product. The optical absorption band gap of the NiO nanoparticles was estimated to be 3.51 eV. Magnetic measurement showed that the nickel oxide nanoparticles exhibit superparamagnetic behavior at 300 K. Moreover, the nanoparticles show ferromagnetic interactions at 4.2 K owing to the existence of uncompensated moments on the surface of the nanoparticles.  相似文献   

12.
A smoothed particle hydrodynamics (SPH) solution to the Rayleigh–Taylor instability (RTI) problem in an incompressible viscous two-phase immiscible fluid with surface tension is presented. The present model is validated by solving Laplace’s law, and square bubble deformation without surface tension whereby it is shown that the implemented SPH discretization does not produce any artificial surface tension. To further validate the numerical model for the RTI problem, results are quantitatively compared with analytical solutions in a linear regime. It is found that the SPH method slightly overestimates the border of instability. The long time evolution of simulations is presented for investigating changes in the topology of rising bubbles and falling spike in RTI, and the computed Froude numbers are compared with previous works. It is shown that the numerical algorithm used in this work is capable of capturing the interface evolution and growth rate in RTI accurately.  相似文献   

13.
The nanocomposite powders of γ-alumina-carbon nanotube were successfully synthesized by a sol–gel process. The homogeneous mixture of carbon nanotubes and alumina particles was obtained by mixing the carbon nanotubes within alumina solution and followed by heating into gel. The resultant gel was dried and calcined at 200 °C into boehmite-carbon nanotubes composite powders. The mean particle size of synthesized boehmite was of the order of 4 nm. The boehmite-carbon nanotubes composite powders were calcined at different temperatures and XRD investigations revealed that as the amount of carbon nanotube increases, γ- to α-alumina phase transformation is completed at higher temperatures. The specific surface area and mean particle size of resultant nanocomposite powders increased and decreased, respectively by increasing the content of carbon nanotubes.  相似文献   

14.
The ZnO-based ceramic films doped with Bi2O3, Sb2O3, MnO, Co2O3 and Cr2O3 were prepared for use as film varistors by a sol–gel method. The formation and the changes of the phases in the films doped with different dopants and annealed at different temperatures were investigated via X-ray diffraction analysis. Three secondary phases, i.e., Bi2O3, Zn7Sb2O12 spinel and ZnCr2O4, were detected in the films when the annealing temperature was above 550 °C. The lattice constants of ZnO and Zn7Sb2O12 spinel phase changed with dopants and the annealing temperature, indicating that the diffusion of the ions into the crystals of ZnO and spinel phase had taken placed. The redistribution of the ions changed the constituents of the intergranular phases and the relevant defect species in ZnO grains, and affected intensively the electrical properties of the films, which were used as film varistors. The highest nonlinear coefficient () with the lowest leakage current was achieved when the film, which was doped with Bi2O3, Sb2O3, MnO and Cr2O3, was annealed at 750 °C.  相似文献   

15.
Data for the heat capacity, electrical resistivity, hemispherical total emittance, and normal spectral emittance (at 898 nm) of niobium are reported for the temperature range 1000–2500 K. Measurements were based on a subsecond pulseheating technique. The results are discussed and compared with the literature values. Reported uncertainties for the properties are 3% for heat capacity, 1% for electrical resistivity, 5% for hemispherical total emittance, and 4% for normal spectral emittance.Paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

16.
17.
Perovskite manganite La1−xCaxMnO3 (x=1/3x=1/3, 1/2 and 2/3) nanoparticles with the average particle size of about 20 nm have been synthesized by a facile nonaqueous sol–gel method using methanol as a solvent and characterized by X-ray diffraction, transmission electron microscopy and superconducting quantum interference device magnetometer. Magnetic measurements reveal that although their bulk counterparts have quite different magnetic ground states, the three-nanosized samples exhibit similar ferromagnetic behaviors below about 270 K. This result implies that with the particle size reduced to nanoscale, the ferromagnetism for x=1/3x=1/3 is weaken, while it is enhanced, accompanied by the suppression of the charge ordering, for x=1/2x=1/2 and 2/3. Moreover, the exchange bias phenomena are observed in the two latter nanoparticles, which is of special interest for potential applications.  相似文献   

18.
《Materials Research Bulletin》2004,39(4-5):715-724
γ-Lithium aluminate was prepared by sol–gel method using lithium methoxide and aluminum-sec-butoxide precursors in i-propanol, n- and tert-butanol. Clear gels could be obtained due to the addition of ethylacetoacetate and the dried solids were calcined at 550 and 900 °C. The resulting solids were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermo-gravimetric analysis/differential thermal analysis (TGA/DTA). γ-Lithium aluminate with the highest purity was obtained with t-butanol solvent and LiAl5O8 was the second major phase.  相似文献   

19.
Topology optimization is frequently used to design structures and acoustic systems in a large range of engineering applications. In this work, a method is proposed for maximizing the absorbing performance of acoustic panels by using a coupled finite element model and evolutionary strategies. The goal is to find the best distribution of porous material for sound absorbing panels. The absorbing performance of the porous material samples in a Kundt tube is simulated using a coupled porous–acoustic finite element model. The equivalent fluid model is used to represent the foam material. The porous material model is coupled to a wave guide using a modal superposition technique. A sensitivity number indicating the optimum locations for porous material to be removed is derived and used in a numerical hard kill scheme. The sensitivity number is used to form an evolutionary porous material optimization algorithm which is verified through examples.  相似文献   

20.
To study the temperature distribution and thermal-stress?eld in different service stages,a twodimensional model of a turbine blade with thermal barrier coatings is developed,in which the conjugate heat transfer analysis and the decoupled thermal-stress calculation method are adopted.Based on the simulation results,it is found that a non-uniform distribution of temperature appears in different positions of the blade surface,which has directly impacted on stress?eld.The maximum temperature with a value of 1030°C occurs at the leading edge.During the steady stage,the maximum stress of thermally grown oxide(TGO)appears in the middle of the suction side,reaching 3.75 GPa.At the end stage of cooling,the maximum compressive stress of TGO with a value of -3.5 GPa occurs at the leading edge.Thus,it can be predicted that during the steady stage the dangerous regions may locate at the suction side,while the leading edge may be more prone to failure on cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号