首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Galvanic corrosion effects in metallized III-V laser structures have been studied. Small gaps present in the metallization can leave exposed semiconductor regions, which are susceptible to localized corrosion in the presence of an electrolyte. Electochemical measurements in two different electrolytes, i.e., 1% HF and concentrated H3PO4, were made of test structures comprised of n-type InP, p-type InP, and p-type InGaAs, as well as Au. Polarization measurements were made in all cases relative to a Ag/AgCl reference electrode. Corrosion potentials, measured relative to Au, of 540, 180, and 330 mV were obtained for n-type InP, p-type InP, and p-type InGaAs, respectively, in 1% HF. Values of 415, 47, and 138 mV were obtained for n-type InP, p-type InP, and p-type InGaAs, respectively, in concentrated H3PO4. Galvanic current densities of 2.0 × 10−6A/cm2, 1.0 × 10−7 A/cm2, and 4.0 × 10−6 A/cm2 were obtained for galvanic couples of n-type InP/Au, p-type InP/Au, and p-type InGaAs/Au, respectively, in 1%HF. Values of 1.2 × 10−6 A/cm2, 1.2 × 10−7 A/cm2, and 1.0 × 10−6 A/cm2 were obtained for galvanic couples of n-type InP/Au, p-type InP/Au, and p-type InGaAs/Au, respectively, in concentrated H3PO4. Complementary microstructural studies, using scanning electron microscopy, were done on actual metallized ridge laser structures, consisting of a p-type InP ridge with a p-type InGaAs capping layer and a Ti/Pt/Au metallization. Localized pitting of the InGaAs layer was observed for samples with gaps in the metallization.  相似文献   

2.
Silicon-dioxide (SiO2) growth on an indium-phosphide (InP) substrate by use of room-temperature (∼30°C) liquid-phase deposition (LPD) is demonstrated. The produced LPD-SiO2 is of good quality and reliability because of the suppression of interdiffusion by use of relatively low temperatures. Because LPD is difficult without residual OH on the substrate, an InP surface rich in hydroxyls (In-OH) is created by pretreating the wafer substrate in a (29% NH4OH:H2O2=1:1) solution. The LPD-SiO2/InP is used to fabricate a metal-oxide semiconductor (MOS) capacitor with a device area of 1.12×10−4 cm2, yielding a leakage-current density of 8.1×10−9 A/cm2 at 3 MV/cm. A mechanism for the LPD deposition of SiO2 on InP is also presented.  相似文献   

3.
Bulk polycrystalline InP is synthesized from the elements via a gradient freeze process. Hall data for a typical boule are Nd-Na= 4.7 × 1015/cm3 and Μ77 = 28,000 cm2/V-sec. Photoluminescence data indicate that zinc is present as an acceptor impurity in the polycrystalline InP and in nominally undoped LEC single crystals grown using the synthesized InP as charge material. A series of doping experiments have determined the effective segregation coefficient to be 1.6 × 10−3 for Fe in InP. Semi-insulating InP crystals with resistivity > 107 ohm—cm have been grown consistently from melts doped with 150 ppm Fe.  相似文献   

4.
The growth of bulk indium phosphide crystals via liquid encapsulated Czochralski pulling from both stoichiometric and nonstoichiometric melts is described. Nominally un-doped crystals with carrier concentration ND-NA = 6 × 1015 cm−3 and Hall mobilities of 4510 cm2/Vsec at room temperature were grown. Also, we prepared Zn-or Cd-doped p-type crystals in the range 1016 ≤ NA-ND ≤ 1018 cm−3 with Hall mobilities ≤ 130 cm2/Vsec and Sn-doped n-type crystals in the range 4 × 1017 ≤ NA-ND ≤ 1018 cm-3 with Hall mobilities ≤ 2400 cm2/Vsec. The dislocation density of LEC pulled InP crystals is typically ~ 104 cm−2.  相似文献   

5.
Thin films of InP were deposited on single crystals and thin films of CdS by the planar reactive deposition technique. Good local epitaxy was observed on single crystals of CdS as well as InP and GaAs. The electrical evaluation of unintentionally doped films on semi-insulating InP substrates show them to be n-type with room temperature electron concentrations ranging from 5 × 1016 cm−3 to 5 × 1017 cm−3 and mobilities up to 1350 cm2/Vsec. For films intentionally doped with Mn and Be, p-type films were obtained. For Mn doping (deep acceptor level), room temperature mobilities as high as 140 cm2/Vsec and free carrier concentrations as low as 5 × 1016 cm−3 (with dopant level of 3 × 1018 cm−3) were obtained. For Bedoped films, free carrier concentrations of about 5 × 1018 cm−3 and mobilities of 20 cm2/Vsec were found. Scanning electron microscope and microprobe pictures show appreciable interdiffusion between the InP/CdS thin-film pair for InP deposited at 450°C. The loss of Cd from the CdS and the presence of an indium-cadmium-sulfur phase at the InP/CdS interface were observed. Interdiffusion is alleviated for InP deposition at lower temperatures. Supported in part by ERDA and AFOSR.  相似文献   

6.
High qualityp-type InP is critical for devices ranging from high power injection lasers to space-based solar cells. The growth of 50 mm diameter, low defect density,p-type, Zn:InP substrates has been achieved for the first time at doping levels below 1018 cm−3. The 600 gram 〈111〉 B-seeded crystals were grown by the vertical dynamic gradient freeze technique. Dislocation densities are more than an order of magnitude below those achieved in comparable LEC-growth material. These range from 300 cm−2 at the seed end to 1200 cm−2 in the 50 mm diameter portion of the crystal. Single crystals were grown with carrier concentrations ranging from 1–5 × 1017 cm−3 as determined by Hall measurements. Hole mobilities as high as 100 cm2 volt−1 sec−1 were achieved. The in-corporation of the zinc dopant follows normal freezing and a distribution coefficient of 0.67 ± .09 was determined. Infrared transmission imaging shows a lower level of stria-tion contrast relative to that observed for sulfur doped InP.  相似文献   

7.
By reducing the temperature gradients in the vicinity of the crystal-melt interface, 35-mm-diameter InP boules with much reduced dislocation densities have been grown by the liquid-encapsulated Czochralski technique. A reduction in the residual donor concentration of InP grown by this technique has been achieved by using In-rich charges prepared by adding elemental In to polycrystalline InP ingot material. Nominally undoped crystals with carrier concentrations as low as 1–2 x4 1015 Cm − 1 and 77 K mobilities as high as 7.0 × 10 cm2 V−1 s−1 have been obtained. By growing doped crystals at increased seed or crucible rotation rates, short-range longitudinal variations in dopant concentration have been reduced to a few per cent, as determined by optical absorption measurements with a scanning CO2 laser.  相似文献   

8.
We report on the control of zinc in organometallic vapor phase epitaxial (OMVPE) grown InP:Zn/InGaAs/InPp- i- n double heterojunctions with InGaAs:Zn contacting layers. As a function of diethylzinc (DEZn) flow, we measure net acceptor concentrations for the InP:Zn p-layer in the range 2 × 1017N aN d≤ 9 × 1017 cm−3. A 435°C post-growth anneal for 300 sec increases the net acceptor concentrations by a factor of 3.6 − to 6 × 1017N aN d≤ 3 × 1018 cm−3. When the annealed value ofN a − Ndin the InP:Zn layer is 6 × 1017 cm−3 , secondary ion mass spectrometry (SIMS) measurements show abrupt Zn-doping transitions at the heterojunction interfaces. In contrast, when the annealed value ofN a − Ndin the InP:Zn layer is near the saturation value of 3 × 1018 cm−3, SIMS measurements show significant movement of Zn into the nominally undoped InGaAs instrinsic layer. Increasedp-i-n diode capacitance is associated with the Zn movement.  相似文献   

9.
We have demonstrated a high-speed InP/lnGaAs heterojunction bipolar transistor with nonalloyed TiPtAu contacts on n+-InP emitter and collector contacting layers. The use of SiBr4 as a silicon doping source enabled the formation of low resistance (pc <2 × 10−6Ω. cm2), nonalloyed TiPtAu contacts to the heavily doped (n = 2 × 1019 cm−3) InP contacting layers. A device with a 3 × 10 Μm2 emitter contact exhibited excellent dc characteristics and had ƒT = ƒmax = 107 GHz. Emitter and collector resistances are compared to a device with InGaAs contacting layers.  相似文献   

10.
A study of the effect of a continuousin situ etch of HC1 on growth rate and the properties of epitaxial InP layers prepared by the vapor phase epitaxial-hydride technique is reported. Growth rates were determined as a function of the following variables: HC1 flow rates in the mixing and source zones, PH3 flow rates, and mixing zone temperatures. Epitaxial InP structures with good morphology were obtained when the continuous HC1 etch was varied between 0.8 and 1.5 cc/min. The average values (77K) of the carrier concentrations and mobilities were 1.3 × 1015 cms−3 and 23,000 cm2V−l Sec−1, respectively. The study indicates that the continuousin situ HCl etch improves the quality of epitaxial InP layers.  相似文献   

11.
GaAs and InP surfaces have been prepared by gas-phase and liquid-phase polysulfide passivation techniques followed by the deposition of Si interface control layers (ICLs) by e-beam evaporation. For GaAs surfaces, the performance of an ICL consisting of 1.5 nm Si on top of 0.5 nm of Ge has also been evaluated. Metal-insulator-semiconductor diodes with aluminum top electrodes were fabricated on these surfaces using silicon nitride deposited by a remote plasma-enhanced chemical vapor technique or silicon dioxide deposited by a conventional direct plasma-enhanced chemical vapor deposition technique. The quality of the interfaces was analyzed by capacitance-voltage (C-V) measurements and the interface state densities Dit were deduced from the C-V data using the high-low method. Values as low as 1.5 × 1012 eV−1cm−2 were obtained for polysulfide-passivated GaAs surfaces with a Ge-Si or Si ICL, the lowest ever demonstrated using the high-low method for an ex-situ technique not involving GaAs epitaxy. For InP, the Si ICL does not reduce Dit below that of 2 × 1012 eV−1 cm −2 that was obtained for the polysulfide passivated surface. The Si ICL produces an interface that degrades more slowly on exposure to air for both GaAs and InP.  相似文献   

12.
The chalcopyrite alloy ZnxCd1−xSnP2 is a potentially use-ful electronic material. In addition to having effective masses lower than and energy gaps similar to its III-V compound analogs, this alloy can also be lattice matched to InP. We have used an open-tube, sliding-boat, liquid-phase system to grow ZnxCd1−xSnP2 epitaxially on InP sub-strates. Unintentionally-doped layers have electron con-centrations as high as 3 × 1019cm−3 with mobility values of about 2,000 cm2/V-sec. These mobility values are sub-stantially larger than have been obtained in the equivalent III-V materials at similar concentrations.  相似文献   

13.
The development of two metallizations based on the solid-phase regrowth principle is presented, namely Pd/Sb(Zn) and Pd/Ge(Zn) on moderately doped In0.53Ga0.47As (p=4×1018 cm−3). Contact resistivities of 2–3×10−7 and 6–7×10−7 Ωcm2, respectively, have been achieved, where both systems exhibit an effective contact reaction depth of zero and a Zn diffusion depth below 50 nm. Exhibiting resistivities equivalent to the lowest values of Au-based systems in this doping range, especially Pd/Sb(Zn) contacts are superior to them concerning metallurgical stability and contact penetration. Both metallizations have been successfully applied for contacting the base layer of InP/In0.53Ga0.47As heterojunction bipolar transistors.  相似文献   

14.
Aluminium oxide-InP structures were fabricated by plasma anodization of evaporated Al-InP systems with intention of fabricating InP MISFETS. It was found that the resistivity and break-down strength of the A12O3 film were influenced by the selection of the end point of the anodization. At appropriate conditions the resistivity of 5 × 1010 − 1012Ω cm for the anodic Al2O3 and the minimum density of the interface trap states of 4 × 1011 cm−2 ev−1 for Al2 O3 -InP systems were obtained.  相似文献   

15.
The low pressure metalorganic chemical vapor deposition epitaxial growth and characterization of InP, Ga0.47In0.53 As and GaxIn1-xAsyP1-y, lattice-matched to InP substrate are described. The layers were found to have the same etch pit density (EPD) as the substrate. The best mobility obtained for InP was 5300 cm2 V−1S−1 at 300 K and 58 900 cm2 V−1 S−1 at 772K, and for GaInAs was 11900 cm2 V−1 S−1 at 300 K, 54 600 cm2 V−1 S−1 at 77 K and 90 000 cm V−1S−1 at 2°K. We report the first successful growth of a GaInAs-InP superlattice and the enhanced mobility of a two dimensional electron gas at a GaInAs -InP heterojunction grown by LP-MO CVD. LP MO CVD material has been used for GaInAsPInP, DH lasers emitting at 1.3 um and 1.5 um. These devices exhibit a low threshold current, a slightly higher than liquid phase epitaxy devices and a high differential quantum efficiency of 60%. Fundamental transverse mode oscillation has been achieved up to a power outpout of 10 mW. Threshold currents as low as 200 mA dc have been measured for devices with a stripe width of 9 um and a cavity length of 300 um for emission at 1.5 um. Values of T in the range 64–80 C have been obtained. Preliminary life testing has been carried out at room temperature on a few laser diodes (λ = 1.5μm). Operation at constant current for severalthousand hours has been achieved with no change in the threshold current.  相似文献   

16.
The interface properties of the anodic oxide/n-type (111) InP metal oxide semiconductor (MOS) structures significantly improved while using the polishing agent HBr:K2Cr2O7:H2O (BCA). Annealing at 250°C dehydrates the grown oxides and has a strong effect on the surface potential. Composition of the oxides analyzed using x-ray photoelectron spectroscopy showed that the oxides are composed of In2O3, InPO3, and InPO4. MOS structures fabricated on BCA polished substrates show a lower surface state density of 6 × 1010 cm−2 eV−1 when compared to the substrates polished with bromine-methanol (8 × 1010 cm−2 eV−1).  相似文献   

17.
Room temperature and elevated temperature sulfur implants were performed into semi-insulating GaAs and InP at variable energies and fluences. The implantations were performed in the energy range 1–16 MeV. Range statistics of sulfur in InP and GaAs were calculated from the secondary ion mass spectrometry atomic concentration depth profiles and were compared with TRIM92 values. Slight in-diffusion of sulfur was observed in both InP and GaAs at higher annealing temperatures for room temperature implants. Little or no redistribution of sulfur was observed for elevated temperature implants. Elevated temperature implants showed higher activations and higher mobilities compared to room temperature implants in both GaAs and InP after annealing. Higher peak electron concentrations were observed in sulfur-implanted InP (n ≈ 1 × 1019 cm−3) compared to GaAs (n ≈ 2 × 1018 cm−3). The doping profile for a buried n+ layer (n ≈ 3.5 × 1018 cm−3) of a positive-intrinsic-negative diode in GaAs was produced by using Si/S coimplantation.  相似文献   

18.
A wide range of samples of both n-type and p-type GaxIn1-xAsyP1-y on InP has been grown by LPE with carrier concentrations in the low 1016cm−3range. The electron mobility (μe) at room temperature decreased from about 4000 cm2V−1s−1 at y = 0 and passed through a shallow minimum near y = 0.25. At high y values, μe rose steeply, reaching 11 000 cm2V−1s−1 at the ternary boundary. In the p-type material the hole mobility (μp) varied from 140 cm V−1s−1 in InP, passed through a minimum of about 70 cm2V−1s−1 near y = 0.5 and then increased swiftly towards the ternary boundary. The temperature dependence of both μe and μp suggested the presence of alloy or space-charge scattering. In order to distinguish between these two mechanisms the pressure coefficient of the direct band-gap dEo/dP was measured as a function of y by observing the movement with pressure of the photoconductive edge. From dEo/dP the pressure variation of the effective mass was deduced. By measuring the change in electron and hole mobilities with pressure, it was then possible to establish that alloy scattering rather than space-charge scattering was occurring. From the composition dependence of the alloy scattering potentials for electrons and holes predictions have been made of the variation of μe and μP with temperature, pressure and dopant Presently a Nuffield Science Fellow concentration. At room temperature a maximum electron mobility of about 11,200 cm2V−1 s−1 is indicated. Presently a Nuffield Science Fellow  相似文献   

19.
The SiO2 film as an insulator in InP MOS structure was grown by mercury-sensitized photo induced chemical-vapor deposition (photo-CVD) utilizing gaseous mixture of monosilane (SiH4) and nitrous oxide (N4O) under 253.7 nm ultraviolet light irradiation. The PHOTOX SiO2 film (i.e., SiO2 film prepared by photo-CVD system) deposited at 250° C has a refractive index of 1.46 and breakdown field strength of 7.0 MV/cm. The 1 MHz capacitance-voltage characteristics of the InP MOS diode was measured to study the interface state densities. The minimum value is 1.2 × 1011 cm−2eV−1 for the sample prepared at a substrate temperature of 250° C.  相似文献   

20.
The anodization of Al film on InP substrate and properties of anodic Al_2O_33/InPhave been investigated by AES,DLTS,I-V,C-V and ellipsometer.The results show that theanodic oxide Al_2O_3 has a permittivity of 11~12 and a resistivity of 1.3×10~(13) ohm-cm.Interfacestate density at Al_2O_3/InP is about 10~(11) cm~(-2)·eV~(-1).DLTS reveals that there is a continuouslydistributed interface electron traps at Al_2O_3/InP interface.Anodic Al_2O_3 exhibits good stabilityand electrical properties and could be used for passivation,diffusion mask and gate insulator,etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号