首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
以丙烯酸甲酯和烷基伯胺为原料,经过亲核加成反应和酯的胺解反应,合成了N,N-二甲基二硫代二丙酰胺(Ⅰa)、N,N-二乙基二硫代二丙酰胺(Ⅰb)、N,N-二正丙基二硫代二丙酰胺(Ⅰc)、N,N-二正丁基二硫代二丙酰胺(Ⅰd)4个二硫代二丙酰胺化合物和N,N-二甲基三硫代二丙酰胺(Ⅱa)、N,N-二乙基三硫代二丙酰胺(Ⅱb)、N,N-二正丙基三硫代二丙酰胺(Ⅱc)、N,N-二正丁基三硫代二丙酰胺(Ⅱd)4个三硫代二丙酰胺化合物,并通过核磁、质谱、红外光谱对其结构进行了表征。抑菌实验结果表明,三硫代二丙酰胺类化合物对大肠杆菌和金黄色葡萄球菌的抑菌性优于相应的二硫代二丙酰胺类化合物,其中Ⅱa和Ⅱb对两种菌的最小抑菌质量浓度均达到了0.03 g/L。一年的海上挂板实验表明,两类化合物均表现出较好的防污性能,其中,Ⅱa和Ⅱb的防污性能最好。  相似文献   

2.
以丙烯酸甲酯为原料,经过二硫代反应、酯的氨解反应,得到N,N'-二丁氧基丙基二硫代二丙酰胺(BPD)、N,N'-二甲氧基丙基二硫代二丙酰胺(MPD)、N,N'-二正辛基二硫代二丙酰胺(OLPD)3种二硫代二丙酰胺衍生物,利用红外光谱和核磁共振波谱表征其结构。3种化合物分别对大肠杆菌和金黄色葡萄球菌进行抑菌实验,结果表明,3种受试化合物对大肠杆菌、金黄色葡萄球菌均具有较好的抑制作用,抑制效果BPD≈MPD>OLPD。BPD对两种菌株的MIC值可达0.062 5 g/L。将所得化合物制备成涂料,通过海上挂板实验研究其防污性能;海上挂板结果表明,3种化合物都具有较好的防污作用,防污效果BPD>MPD>OLPD。  相似文献   

3.
以丙烯酸甲酯为原料,经过二硫代反应、酯的氨解反应,得到N’N-二丁氧基丙基二硫代二丙酰胺(BPD)、N’N-二甲氧基丙基二硫代二丙酰胺(MPD)、 N’N-二正辛基二硫代二丙酰胺(OLPD)三种二硫代二丙酰胺衍生物,利用红外和核磁表征其结构。三种化合物分别对大肠杆菌和金黄色葡萄球菌进行抑菌实验,结果表明三种受试化合物对大肠杆菌、金黄色葡萄球菌均具有较好的抑制作用,抑制效果BPD≈MPD>OLPD。BPD对二种菌株的MIC值可达0.0625 mg/mL。将所得化合物制备成涂料,通过海上挂板实验研究其防污性能;海上挂板结果表明:三种化合物都具有较好的防污作用,防污效果BPD>MPD>OLPD。  相似文献   

4.
以丙烯酸甲酯为原料,经二硫代反应和酰胺化反应,得到N,N'-二异丙氧基丙基二硫代二丙酰胺(IPD)、N,N'-二乙氧基丙基二硫代二丙酰胺(EPD)、N,N'-二正辛基二硫代二丙酰胺(OLPD)3种二硫代二丙酰胺衍生物,利用红外和核磁表征其结构,并将其作为防污剂制备海洋防污涂料,海上挂板结果表明,6个月内3种化合物都有较好的防污作用,其防污效果IPDOLPDEPD。  相似文献   

5.
介绍了异噻唑啉酮的中间体N,N′-二丁氧基甲基二硫代二丙酰胺(BMD)的合成,产率91.2%,并通过红外光谱(FT-IR)和核磁波谱(1HNMR)对BMD结构进行表征。对BMD进行了抑菌性能的研究,结果显示BMD对金黄色葡萄球菌、大肠杆菌、裂殖酵母菌的最小抑菌浓度分别为0.125 mg/mL,0.25 mg/mL,0.125 mg/mL。以BMD为防污剂制备海洋防污涂料,173 d的实海挂板结果与空白板相比较,仅有少量大型污损生物附着。  相似文献   

6.
用胺解法合成了N,N′-二丁氧基丙基二硫代二丙酰胺(BPD),产率85.6%,用IR和1HNMR对其结构进行了表征。对BPD进行了抑菌、杀藻性能考察,结果显示,BPD对金黄色葡萄球菌、大肠杆菌、裂殖酵母菌的最小抑菌质量浓度分别为0.0625、0.25、0.125g/L;对湛江叉边金藻24h和48h的半致死质量浓度分别为1.77mg/L和1.44mg/L。以BPD为防污剂制备了海洋防污涂料,173d的实海挂板结果较空白板仅有少量污损生物附着。  相似文献   

7.
以β-二硫代二丙酸二甲酯和烯丙基胺为原料通过酰胺化反应合成了N,N’-二烯丙基二硫代二丙酰胺(ALPD),并通过红外光谱(IR)和核磁波谱(1HNMR)对ALPD结构进行表征。探讨了反应物摩尔配比、催化剂用量、β-二硫代二丙酸二甲酯滴加时间、反应时间对ALPD产率的影响;考察了APLD的抑菌性能。结果表明,在固定烯丙基胺为0.3mol前提下最优条件为n(烯丙基胺):n(β-二硫代二丙酸二甲酯)=3:1,催化剂三乙胺的用量为2.5mL,β-二硫代二丙酸二甲酯的滴加时间为2.5h,反应时间为48h,产率为88.4%。ALPD对大肠杆菌、金黄色葡萄球菌的最小抑菌浓度分别为0.1250g/L、0.0625g/L。ALPD中的双键可以通过聚合反应引入到大分子结构中。  相似文献   

8.
于晶  于良民  阮秀  杨玉臻  李霞 《精细化工》2011,28(8):787-790
以β-二硫代二丙酸二甲酯和烯丙基胺为原料,通过酰胺化反应合成了N,N′-二烯丙基二硫代二丙酰胺(ALPD),用红外光谱和核磁共振氢谱对ALPD结构进行了表征。探讨了反应物摩尔比、催化剂用量、β-二硫代二丙酸二甲酯滴加时间、反应时间对ALPD产率的影响;考察了ALPD的抑菌性能。结果表明,烯丙基胺为0.3mol,n(烯丙基胺)∶n(β-二硫代二丙酸二甲酯)=3∶1,催化剂三乙胺为2.5 mL,β-二硫代二丙酸二甲酯的滴加时间为2.5 h,反应时间为48 h,产率为88.4%。ALPD对大肠杆菌、金黄色葡萄球菌的最小抑菌质量浓度分别为0.125 0、0.062 5 g/L。ALPD中的双键可以通过聚合反应引入到大分子结构中。  相似文献   

9.
新型吲哚类防污剂抑菌性能评价   总被引:1,自引:0,他引:1  
对6种含TBG衍生结构的N-取代吲哚衍生物进行了抑菌活性检测。结果表明,各吲哚衍生物对大肠杆菌和金黄色葡萄球菌两种供试菌株均有一定的生长抑制作用,对金黄色葡萄球菌的作用明显优于对大肠杆菌的作用。其中ClG-BP抑菌效果最好,对大肠杆菌和金黄色葡萄球菌最小抑菌质量浓度分别为0.12 mg/mL、0.01 mg/mL。各化合物抑菌性能相对大小为:ClG-BP>ClG>BrG-BP>ClG-MP>BrG>BrG-MP。  相似文献   

10.
以腈纶为起始原料,分别经水合肼、乙二胺、二乙烯三胺预交联后,以N,N-二甲基甲酰胺作溶剂与硫化钠反应,合成了三种携硫代酰胺功能基可达6.8mmol/g(干纤维)的螯合功能纤维。探讨了溶剂、反应温度、反应时间、pH等对反应产物的影响,利用红外光谱、元素分析、热稳定分析、重量分析等对该螯合纤维的结构、性能等进行了表征,并就其对金属离子的吸附性能进行了研究。结果表明:螯合纤维对Au3+、Ag+、Pd2+等贵金属离子具有良好的吸附性,对Ag+的吸附容量可达1510mg/g(干纤维),对Au3+、Pd2+的吸附容量分别为800mg/g(干纤维)和21.2mg/g(干纤维)。  相似文献   

11.
《Ceramics International》2020,46(3):2901-2909
In this work, a Cu-incorporated Al2O3 coating has been successfully produced through the one-step plasma electrolytic oxidation (PEO) method. Unexpectedly, the resultant Cu-incorporated Al2O3 coating displays a multi-layered structure, which exhibits significant variations in morphology, composition and crystallinity. Compared to the compact outer layer of the PEO coating, both medium and inner layers are highly porous even the average pore size of the medium layer is obviously higher than that of the inner layer. The medium layer has a higher Cu content in comparison to both outer and inner layers. And the outer layer mainly consists of crystalline γ-Al2O3 phase whereas both medium and inner layers are in amorphous states. Further, it was found that Cu specie could exist as Cu2O and CuO in the Cu-incorporated PEO coating. Finally, it was revealed that the incorporation of Cu into the porous PEO coating significantly improves the antifouling property of Al metallic substrate against SRB, which successfully prevents the formation of SRB biofilm. Hence, PEO method is a promising surface modification technique for the fabrication of antifouling coating.  相似文献   

12.
New acrylate grafting epoxy antifouling resins containing benzoisothiazoline ketone (BIT) group were successfully synthesized, and their structures and performances were determined. Experimental data indicated that the new acrylate grafting epoxy antifouling resins have a strong bonding to the cured epoxy resin coating through chemical reaction and self-stratifying. And the paint prepared by using the new resin as matrix has excellent self-polishing and antifouling properties. Especially its antifouling period could be modified by changing the weight ratio of the usage of the mixed monomers and epoxy resin in the preparing process of the acrylate grafting epoxy antifouling resins.  相似文献   

13.
The synthesis and characterization of a series of biocidal polymeric materials for potential antifouling submarine applications are presented. The polymeric backbone of these materials contains anionic units, such as styrene sulfonate, and/or acrylate or maleate units. The hydrophobic/hydrophilic nature of these polymers was, furthermore, tuned through copolymerization with hydrophobic units, such as vinyl acetate or styrene. The biocidal species, Cu2+ ions and/or phosphonium cations, were incorporated through electrostatic and/or coordination interactions, depending on the nature of the polymeric backbone. It was observed that the release of Cu2+ ions in water from the Cu2+-containing materials is controlled by the hydrophobic/hydrophilic balance of the polymeric backbone. The prepared biocidal polymeric materials were incorporated into two paint formulations, based on a rosin or a vinylic matrix. The erosion properties of the biocidal paints under accelerated laboratory conditions were evaluated using scanning electron microscopy. It is found that the antifouling performance is related to the release of biocidal species. The most efficient materials are those containing Cu2+ ions or combining both Cu2+ and phosphonium cations.  相似文献   

14.
Epoxy resin is chosen for our present study owing to its exceptional combination of properties such as easy processing, high safety, excellent solvent and chemical resistance, toughness, low shrinkage on cure, good electrical, mechanical and corrosion resistance with excellent adhesion to many substrates. This versatility in formulation made epoxy resins widely applied for surface coatings, adhesives, laminates, composites, potting, painting materials, encapsulant for semiconductor and insulating material for electric devices. There are numerous paint/coating systems based on epoxy resin available for corrosion and fouling prevention. They however are not completely satisfactory in field applications, where high corrosion, fouling and flame resistance are required. The demand for epoxy resin as corrosion/fouling resistant coatings is restricted mainly due to its inferior characteristics like poor impact strength, high rigidity, and moisture absorbing nature besides inadequate flame retardant properties. It is for this reason that silicones and phosphorus-based compounds are used as modifier in this work by intercrosslinking network mechanism (ICN) to obtain epoxy resin with desired properties ideally suitable for field applications for preventing corrosion and fouling with flame retardantancy. The present work involves the development of solvent free silicone/phosphorus modified epoxy coating systems, since solvent free coating systems are widely used for numerous applications due to their lower cost per unit film thickness, freedom from fire and pollution hazard and ability to provide better performance. For the development of coating systems, epoxy resin (X) serves as base material, hydroxyl terminated polydimethylsiloxane (HTPDMS) as modifier, γ-aminopropyltriethoxysilane (γ-APS) as crosslinking agent and dibutyltindilaurate (DBTDL) as catalyst. Polyamidoamine (A), aromatic amine adducts (B) and phosphorus-containing diamine (C) were used as curing agents. The study also describes the evaluation of corrosion resistant behaviour of unmodified epoxy and siliconized epoxy coatings by potentiodynamic polarization method, electrochemical impedance spectroscopy (EIS), salt-spray and antifouling tests. The results are discussed.  相似文献   

15.
The development of new antifouling coatings with respect to the marine environment is actually crucial. The aim of the present work is to concept an erodible paint formulated with biodegradable polyester as binders and which combines two modes of prevention: chemical and physical repelling of biofouling. This system is principally dedicated to disturb durable settlement of microfouling. Each component was chosen according to its specific properties: chlorhexidine is a bisdiguanide antiseptic with antibacterial activity, zinc peroxide is an inorganic precursor of high instable entities which react with seawater to create hydrogen peroxide, Tween 85 is a non ionic surfactant disturbing interactions between colonizing organisms and surface. Obtained results highlighted the interest on mixing such molecules to obtain a promising coating with lower toxicity than traditional systems.  相似文献   

16.
Coverage of artificial surfaces within seawater by fouling organisms is defined as biofouling. Although biofouling is a natural process, it has some disadvantages for shipping industry such as increased fuel consumption, and CO2 emission. Therefore, the ships' hull must be covered by antifouling (AF) or fouling release type coatings to overcome biofouling. In general, the so-called self-polishing AF paints contain biocides for preventing fouling organisms. Their concentrations and release rates from AF coatings are of great importance and they definitely affect both quality and cost of the coating. In the present study, we aimed at applying a new robust method. In this method, we used a model biocide, i.e., econea, to obtain its RP-HPLC optimization through artificial neural networks (ANN) and to see its antifouling performance. Column temperature, mobile phase ratio, flow rate, concentration and wavelength as input parameters and retention time as an output parameter were used in the ANN modeling. In conclusion, the R&D groups in AF paint industry may use RP-HPLC method supported with ANN modeling in further studies.  相似文献   

17.
The water sorption and solubility parameters of chemically active paints were studied by electrochemical impedance spectrometry (EIS) measurements. Erodible acrylic-based coatings containing biocidal tertiary amines were investigated. Results from EIS measurements show that both the water sorption at saturation and the apparent water diffusion coefficient decrease as the alkyl chain length of the biocidal amines increases from 8 to 16 carbon atoms. The increase of the hydrophobic character of the resulting coatings results to a higher resistance to erosion. Erosion tests performed under static and dynamic conditions show that the seawater conditions can markedly affect the performance of chemically active paints.  相似文献   

18.
The past few decades have witnessed rapid gains in our demands of antifouling membranes such as water purification membranes and hemodialysis membranes. A variety of methodologies have been proposed for improving the antifouling performance and the hemocompatibility of the membranes. In this study, a series of copolymers (PSF-PESSB) containing polysulfone (PSF) and poly(arylene ether sulfone) bearing pendant zwitterionic sulfobetaine groups (PESSB) were prepared via one-pot polycondensation. Subsequently, the ultrafiltration (UF) membranes were prepared from different zwitterion-containing copolymers. The prepared membranes showed high thermal stability and mechanical properties. Besides, it also displayed attractive antifouling performance and blood compatibility. Compared with the original PSF membrane, the amount of protein absorption on the modified membrane was reduced; the flux recovery ratio and the resistance to blood cells were significantly improved. The results of this work suggest that PSF-PESSB membranes are expected to be applied in blood purification. The introduction of zwitterion-containing polymers to membranes paves ways for developing advanced hemodialysis technologies for crucial process.  相似文献   

19.
《Ceramics International》2022,48(17):24777-24787
Bi2WO6/AgIO3 (BWO/AIO) nanosheet composites were constructed by a two-step hydrothermal method. The structure, morphology and photoelectrochemical properties of the composites were characterized by X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (UV-DRS), transmission electron microscopy (TEM), impedance, X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The constructed photocatalyst composites exhibited the best photocatalytic performance at a molar ratio of BWO/AIO-0.8. In addition, there was complete degradation of RhB by the BWO/AIO-0.8 in 180 min under illumination, and the bactericidal rates were 99.10%, 97.32% and 96.3% for P. aeruginosa, S. aureus and E. coli, respectively, in 60 min. Based on the energy band structure of the semiconductor and radical trapping experiments, the S-scheme heterojunction was associated with the enhanced photocatalytic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号