首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于频繁模式树的负关联规则挖掘算法   总被引:1,自引:0,他引:1  
典型的正关联规则仅考虑事务中所列举的项目。负关联规则不但要考虑事务中所包含的项目集,还必需考虑事务中所不包含的项目,它包含了非常有价值的信息。然而,对于负关联规则的研究却很少,仅有的几种算法也存在一定的局限性。为此,该文提出了一种基于FP-tree的负关联规则挖掘算法,该算法不但可以发现事务数据库中所有的负关联规则,而且整个过程只需扫描事务数据库两次,算法是有效和可行的。  相似文献   

2.
基于频繁模式树的分布式关联规则挖掘算法   总被引:1,自引:0,他引:1  
何波 《控制与决策》2012,27(4):618-622
提出一种基于频繁模式树的分布式关联规则挖掘算法(DMARF).DMARF算法设置了中心结点,利用局部频繁模式树让各计算机结点快速获取局部频繁项集,然后与中心结点交互实现数据汇总,最终获得全局频繁项集.DMARF算法采用顶部和底部策略,能大幅减少候选项集,降低通信量.理论分析和实验结果均表明了DMARF算法是快速而有效的.  相似文献   

3.
钱雪忠  惠亮 《计算机应用》2011,31(5):1339-1343
基于FP-tree的最大频繁模式挖掘算法是目前较为高效的频繁模式挖掘算法,针对这些算法需要递归生成条件FP-tree、产生大量候选最大频繁项集等问题,在分析FPMax、DMFIA算法的基础上,提出基于降维的最大频繁模式挖掘算法(BDRFI)。该算法改传统的FP-tree为数字频繁模式树DFP-tree,提高了超集检验的效率;采用的预测剪枝策略减少了挖掘的次数;基于降低项集维度的挖掘方式,减少了候选项的数目,避免了递归地产生条件频繁模式树,提高了算法的效率。实验结果表明,BDRFI的效率是同类算法的2~8倍。  相似文献   

4.
关联规则挖掘算法介绍   总被引:2,自引:0,他引:2  
数据挖掘是一个多学科交叉融合而形成的新兴的学科,它利用各种分析工具在海量数据中发现模型和数据间的关系。而在大规模事务数据库中,挖掘关联规则是数据挖掘领域的一个非常重要的研究课题。文中介绍了关联规则挖掘的研究情况,描述了经典Apfiofi算法的实现,并对该算法进行了分析和评价,指出了其不足和原因。描述了FP树挖掘最大频繁项集的算法,通过实例对该算法进行了性能评估,并得到结论:数据库中潜在的最大频繁模式越多,运行时间越长。  相似文献   

5.
关联规则挖掘算法介绍   总被引:6,自引:0,他引:6  
数据挖掘是一个多学科交叉融合而形成的新兴的学科,它利用各种分析工具在海量数据中发现模型和数据间的关系。而在大规模事务数据库中,挖掘关联规则是数据挖掘领域的一个非常重要的研究课题。文中介绍了关联规则挖掘的研究情况,描述了经典Apriori算法的实现,并对该算法进行了分析和评价,指出了其不足和原因。描述了FP树挖掘最大频繁项集的算法,通过实例对该算法进行了性能评估,并得到结论:数据库中潜在的最大频繁模式越多,运行时间越长。  相似文献   

6.
基于FP-tree的最大频繁模式挖掘算法   总被引:11,自引:0,他引:11  
冯志新  钟诚 《计算机工程》2004,30(11):123-124
在FP-tree结构的基础上提出了最大频繁模式挖掘算法FP-Max。算法FP-Max只需要两次数据库扫描,挖掘过程不会产生候选项集。实验表明.算法FP-Max在挖掘密集型数据集方面是高效的。  相似文献   

7.
介绍了关联规则挖掘算法的基本原理和基本概念,包括项目、项目集、置信度、支持度等。重点介绍了经典的Ariori算法、优化的FP_Growth算法,介绍了关联规则分类与挖掘的步骤与常用性质,对常见关联规则挖掘算法的效率作了必要的比较。  相似文献   

8.
分布式数据库多层关联规则挖掘算法研究   总被引:1,自引:0,他引:1  
曹洪其  姜志峰  孙志挥 《计算机应用》2005,25(12):2858-2861
对分布式数据库多层关联规则挖掘的理论和方法进行了研究,提出了一种基于频繁模式树FP-tree(Freguent Pattern tree)的快速挖掘算法DMAML_FPT(Distributed Mining Algorithm of Multiple Level based on FP-tree)。与类Apriori算法相比较,该算法最多只需扫描数据库三遍,不需产生和传输大量的候选项集,减少了数据通信量,从而提高了数据挖掘的效率。 实验结果表明算法DMAML_FPT是可行和有效的。  相似文献   

9.
基于数组的关联规则挖掘算法   总被引:12,自引:0,他引:12  
孟祥萍  钱进  刘大有 《计算机工程》2003,29(15):98-99,109
提高频繁项集挖掘算法的效率是关联规则挖掘研究的一个重点领域。文章提出了基于数组的关联规则挖掘算法,只需要扫描数据库1次,通过不断减少数据库中的事务个数,并且利用一维数组对候选2-项集进行计数来提高挖掘效率。实验表明,该文所提出的算法效率比经典Apriori算法快2~3倍。  相似文献   

10.
特定数据最大频繁集挖掘算法   总被引:2,自引:0,他引:2  
针对在某些限定项目数与交易长度数据的关联规则挖掘中FP-growth算法执行效率很低的问题,提出一种最大频繁模式挖掘算法,该算法引入与FP-tree结构类似的All-subset tree存储所有的最大频繁项目集,无需在扫描数据库前指定最小支持度,可以动态给定最小支持度而不用重新扫描数据库。实验结果表明,该算法在这些特定数据的挖掘中,与FP-growth相比明显提高了挖掘效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号