共查询到20条相似文献,搜索用时 63 毫秒
1.
2.
基于频繁模式树的分布式关联规则挖掘算法 总被引:1,自引:0,他引:1
提出一种基于频繁模式树的分布式关联规则挖掘算法(DMARF).DMARF算法设置了中心结点,利用局部频繁模式树让各计算机结点快速获取局部频繁项集,然后与中心结点交互实现数据汇总,最终获得全局频繁项集.DMARF算法采用顶部和底部策略,能大幅减少候选项集,降低通信量.理论分析和实验结果均表明了DMARF算法是快速而有效的. 相似文献
3.
基于FP-tree的最大频繁模式挖掘算法是目前较为高效的频繁模式挖掘算法,针对这些算法需要递归生成条件FP-tree、产生大量候选最大频繁项集等问题,在分析FPMax、DMFIA算法的基础上,提出基于降维的最大频繁模式挖掘算法(BDRFI)。该算法改传统的FP-tree为数字频繁模式树DFP-tree,提高了超集检验的效率;采用的预测剪枝策略减少了挖掘的次数;基于降低项集维度的挖掘方式,减少了候选项的数目,避免了递归地产生条件频繁模式树,提高了算法的效率。实验结果表明,BDRFI的效率是同类算法的2~8倍。 相似文献
4.
5.
关联规则挖掘算法介绍 总被引:6,自引:0,他引:6
数据挖掘是一个多学科交叉融合而形成的新兴的学科,它利用各种分析工具在海量数据中发现模型和数据间的关系。而在大规模事务数据库中,挖掘关联规则是数据挖掘领域的一个非常重要的研究课题。文中介绍了关联规则挖掘的研究情况,描述了经典Apriori算法的实现,并对该算法进行了分析和评价,指出了其不足和原因。描述了FP树挖掘最大频繁项集的算法,通过实例对该算法进行了性能评估,并得到结论:数据库中潜在的最大频繁模式越多,运行时间越长。 相似文献
6.
关联规则挖掘算法介绍 总被引:2,自引:0,他引:2
数据挖掘是一个多学科交叉融合而形成的新兴的学科,它利用各种分析工具在海量数据中发现模型和数据间的关系。而在大规模事务数据库中,挖掘关联规则是数据挖掘领域的一个非常重要的研究课题。文中介绍了关联规则挖掘的研究情况,描述了经典Apfiofi算法的实现,并对该算法进行了分析和评价,指出了其不足和原因。描述了FP树挖掘最大频繁项集的算法,通过实例对该算法进行了性能评估,并得到结论:数据库中潜在的最大频繁模式越多,运行时间越长。 相似文献
7.
基于FP-tree的最大频繁模式挖掘算法 总被引:11,自引:0,他引:11
在FP-tree结构的基础上提出了最大频繁模式挖掘算法FP-Max。算法FP-Max只需要两次数据库扫描,挖掘过程不会产生候选项集。实验表明.算法FP-Max在挖掘密集型数据集方面是高效的。 相似文献
8.
介绍了关联规则挖掘算法的基本原理和基本概念,包括项目、项目集、置信度、支持度等。重点介绍了经典的Ariori算法、优化的FP_Growth算法,介绍了关联规则分类与挖掘的步骤与常用性质,对常见关联规则挖掘算法的效率作了必要的比较。 相似文献
9.
10.
11.
Apriori算法是经典的关联规则挖掘算法,它利用逐层搜索的迭代方法完成频繁模式的挖掘工作,反复进行连接剪枝操作,思路简单易操作,但也伴随着产生庞大候选集,多次扫描数据库产生巨大I/0开销的问题,提出一种改进算法:基于矩阵的关联规则挖掘算法,同Apriori算法比较,该算法只需扫描一遍数据库,就可直接查找k-频繁项集,尤其是当频繁项集较高的时候,该算法具有更高的执行效率,在大数据量的情况下更具有可行性. 相似文献
12.
关联规则是数据挖掘中的概念,通过分析数据找到数据之间的关联.海量数据会产生大量冗余和相似的关联规则,影响用户对规则的理解和判断.本文采用鸢尾花数据集进行实验.建立三个检验指标,删除冗余关联规则;在进行K-means分析时利用规则产生的三角形迭代选择初始点,再将删除冗余后的规则进行聚类.实验证实本文方法将相似的关联规则归为一簇,能有效的帮助用户迅速找到有用的关联规则,有助于用户更好的对规则进行理解和分析,提高了聚类的效率. 相似文献
13.
任荣 《数字社区&智能家居》2009,(3)
数据挖掘是基于数据仓库的知识发现技术,当数据仓库数据海量时,进行穷举搜索是不可行的,必须采取一种有效的搜索策略。遗传算法不仅具有很好的全局搜索能力,同时它能较好的处理数据库中不同属性之间的相互关系。该文论述了如何把遗传算法应用于数据挖掘领域。 相似文献
14.
15.
传统的并行关联规则算法对每一次迭代都定义一个MapReduce任务,以实现候选项集的生成和计数功能,但多次启动MapReduce任务会带来极大的性能开销。文中定义了一种并行关联规则挖掘算法PST-Apriori,该算法采取分治策略,在每个分布式计算节点定义一个前缀共享树,通过递归调用的方式将事务T生成的候选项集逐层压缩到前缀共享树(PST)中。然后广度遍历PST,逐层将每个节点对应的〈key,value〉作为map函数的输入,并由Map-Reduce框架自动按照key值进行聚集。最后调用reduce函数对多个任务的处理结果进行汇总,得到满足最小支持度阈值的频繁项集。算法只使用两个MapReduce任务,且PST按照key值排序便于Mapper端的shuffle操作,提高了运行效率。 相似文献
16.
为了提供一种更加准确高效的关联规则算法,在传统的Apriori算法的基础上引入分而治之的理念和加权的思想.先把数据库分成互不相交的块,根据需求分析从每一个块中产生用户感兴趣的子集,把所有的子集合并成挖掘对象,再利用普通的关联规则算法产生频繁项集,最后在该项集的基础上产生加权频繁项集.该算法基本上克服了传统Apriori算法的缺点,从而大大地提高了运算效率,最大限度解决了"项集生成瓶颈"问题,并且使得生成的关联规则更加科学、准确. 相似文献
17.
针对传统数据挖掘中的“尖锐边界”问题,采用将模糊理论和关联规则挖掘技术相结合的思想,在改进传统Apriori算法的基础上,结合多层关联规则挖掘的方法,提出了一种模糊多层关联规则挖掘算法。对模糊多层关联规则挖掘的基本概念进行了定义,详细描述了模糊多层关联规则挖掘算法。最后用Visual FoxPro6.0语言实现了该算法程序,通过交易数据库挖掘实验表明算法是有效的。 相似文献
18.
关联规则挖掘算法的改进 总被引:2,自引:1,他引:2
为了提供一种更加准确高效的关联规则算法,在传统的Apriori算法的基础上引入分而治之的理念和加权的思想。先把数据库分成互不相交的块,根据需求分析从每一个块中产生用户感兴趣的子集,把所有的子集合并成挖掘对象,再利用普通的关联规则算法产生频繁项集,最后在该项集的基础上产生加权频繁项集。该算法基本上克服了传统Apriori算法的缺点,从而大大地提高了运算效率,最大限度解决了“项集生成瓶颈”问题,并且使得生成的关联规则更加科学、准确。 相似文献
19.
一个改进的关联规则的频繁项目集数据挖掘算法 总被引:1,自引:0,他引:1
在关联规则中的Apriori算法,具有天生的缺陷,运行效果很不理想。为了克服Apriori算法的缺点,本文提出了一个改进的算法:在产生频繁项目集组合时,只需扫描数据库一次,这样就可以有效率地降低I/O的存取时间,更快速地找出符合使用者需求的关联规则。仿真实验表明,该算法是有效的。 相似文献
20.
关联规则挖掘算法Apriori算法在挖掘频繁模式时需要产生大量的候选项集,多次扫描数据库,时空复杂度过高.针对该算法的局限性,提出了一种通过对项编码来减少扫描数据库次数并通过删除项来减少候选项集的数量,从而提高算法的效率.相同条件下的实验结果表明,优化后的算法能有效地提高关联规则挖掘的效率. 相似文献