共查询到10条相似文献,搜索用时 15 毫秒
1.
2.
基于频繁模式树的分布式关联规则挖掘算法 总被引:1,自引:0,他引:1
提出一种基于频繁模式树的分布式关联规则挖掘算法(DMARF).DMARF算法设置了中心结点,利用局部频繁模式树让各计算机结点快速获取局部频繁项集,然后与中心结点交互实现数据汇总,最终获得全局频繁项集.DMARF算法采用顶部和底部策略,能大幅减少候选项集,降低通信量.理论分析和实验结果均表明了DMARF算法是快速而有效的. 相似文献
3.
基于FP-tree的最大频繁模式挖掘算法是目前较为高效的频繁模式挖掘算法,针对这些算法需要递归生成条件FP-tree、产生大量候选最大频繁项集等问题,在分析FPMax、DMFIA算法的基础上,提出基于降维的最大频繁模式挖掘算法(BDRFI)。该算法改传统的FP-tree为数字频繁模式树DFP-tree,提高了超集检验的效率;采用的预测剪枝策略减少了挖掘的次数;基于降低项集维度的挖掘方式,减少了候选项的数目,避免了递归地产生条件频繁模式树,提高了算法的效率。实验结果表明,BDRFI的效率是同类算法的2~8倍。 相似文献
4.
关联规则挖掘算法介绍 总被引:2,自引:0,他引:2
数据挖掘是一个多学科交叉融合而形成的新兴的学科,它利用各种分析工具在海量数据中发现模型和数据间的关系。而在大规模事务数据库中,挖掘关联规则是数据挖掘领域的一个非常重要的研究课题。文中介绍了关联规则挖掘的研究情况,描述了经典Apfiofi算法的实现,并对该算法进行了分析和评价,指出了其不足和原因。描述了FP树挖掘最大频繁项集的算法,通过实例对该算法进行了性能评估,并得到结论:数据库中潜在的最大频繁模式越多,运行时间越长。 相似文献
5.
关联规则挖掘算法介绍 总被引:6,自引:0,他引:6
数据挖掘是一个多学科交叉融合而形成的新兴的学科,它利用各种分析工具在海量数据中发现模型和数据间的关系。而在大规模事务数据库中,挖掘关联规则是数据挖掘领域的一个非常重要的研究课题。文中介绍了关联规则挖掘的研究情况,描述了经典Apriori算法的实现,并对该算法进行了分析和评价,指出了其不足和原因。描述了FP树挖掘最大频繁项集的算法,通过实例对该算法进行了性能评估,并得到结论:数据库中潜在的最大频繁模式越多,运行时间越长。 相似文献
6.
基于FP-tree的最大频繁模式挖掘算法 总被引:11,自引:0,他引:11
在FP-tree结构的基础上提出了最大频繁模式挖掘算法FP-Max。算法FP-Max只需要两次数据库扫描,挖掘过程不会产生候选项集。实验表明.算法FP-Max在挖掘密集型数据集方面是高效的。 相似文献
7.
介绍了关联规则挖掘算法的基本原理和基本概念,包括项目、项目集、置信度、支持度等。重点介绍了经典的Ariori算法、优化的FP_Growth算法,介绍了关联规则分类与挖掘的步骤与常用性质,对常见关联规则挖掘算法的效率作了必要的比较。 相似文献
8.
分布式数据库多层关联规则挖掘算法研究 总被引:1,自引:0,他引:1
对分布式数据库多层关联规则挖掘的理论和方法进行了研究,提出了一种基于频繁模式树FP-tree(Freguent Pattern tree)的快速挖掘算法DMAML_FPT(Distributed Mining Algorithm of Multiple Level based on FP-tree)。与类Apriori算法相比较,该算法最多只需扫描数据库三遍,不需产生和传输大量的候选项集,减少了数据通信量,从而提高了数据挖掘的效率。 实验结果表明算法DMAML_FPT是可行和有效的。 相似文献
9.