首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A nano dual-phase powder with great sinterability was synthesized by molten-salt assisted borothermal reductions at 1100 °C using B, ZrO2, HfO2, Ta2O5, Nb2O5 and TiO2 powders as raw materials. Single-phase (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 high-entropy ceramic was prepared by spark plasma sintering using the as-synthesized nano dual-phase powder. Oxidation behavior of the (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic was investigated over the range of 30–1400 °C in air and the result indicated that the rapid oxidation of ceramic began at 1300 °C. The phenomenon could be ascribed to the rapid volatilization of B2O3 from oxide scale. A layered structure was formed at the cross section of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic after oxidation. The relationship between partial pressures of gaseous metal oxides and oxygen partial pressures was calculated, which inferred that the formation of layered structure could be ascribed to the active oxidation of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2, the generation of gaseous metal oxides, their outward diffusion and further oxidation.  相似文献   

2.
The formation possibility of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic (HHC-1) was first analyzed by the first-principles calculations, and then, it was successfully fabricated by hot-pressing sintering technique at 2073 K under a pressure of 30 MPa. The first-principles calculation results showed that the mixing enthalpy and mixing entropy of HHC-1 were −0.869 ± 0.290 kJ/mol and 0.805R, respectively. The experimental results showed that the as-prepared HHC-1 not only had an interesting single rock-salt crystal structure of metal carbides but also possessed high compositional uniformity from nanoscale to microscale. By taking advantage of these unique features, it exhibited extremely high nanohardness of 40.6 ± 0.6 GPa and elastic modulus in the range from 514 ± 10 to 522 ± 10 GPa and relatively high electrical resistivity of 91 ± 1.3 μΩ·cm, which could be due to the presence of solid solution effects.  相似文献   

3.
Starting from metal oxides, B4C and graphite, a suite of high-entropy boride ceramics, formulated (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, (Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2 and (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 derived from boro/carbothermal reduction at 1600 °C were fabricated by spark plasma sintering at 2000 °C. It was found that the synthetic high-entropy boride crystalized in hexagonal structure and the yield of the targeting phase was calculated to be over 93.0 wt% in the sintered ceramics. Benefitting from the nearly full densification (96.3% ˜ 98.5% in relative density) and the refined microstructure, the products exhibited the relatively high Vickers hardness. The indentation fracture toughness was determined to be comparable with the single transition metal-diboride ceramics. It should be noted that the formation of high-entropy boride ceramics were featured with the relatively high hardness at no expense of the fracture toughness.  相似文献   

4.
A novel (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic was successfully prepared by pressureless sintering at 2200 °C. With increasing content of resin-derived-carbon, the density, and mechanical and thermal properties increased up to a maximum content of 2~4 wt% resin addition, after which further addition was detrimental. All specimens showed high strength (≥347±36 MPa), with the highest value achieving 450±64 MPa, and fracture toughness significantly higher (>20 %) than those of the corresponding monocarbides and Ta0.5Hf0.5C, (Ta1/3Zr1/3Nb1/3)C. The thermal conductivity was approximately equivalent to the lowest value of the corresponding mono-carbides, which was assumed to be due to the lattice distortion effect.  相似文献   

5.
To prepare large-sized and complex-shaped components, the feasibility of direct diffusion bonding of (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C high-entropy ceramic (HEC) and its diffusion bonding with a metallic Ni foil was investigated, and the interfacial microstructure and mechanical properties of HEC/HEC and HEC/Ni/HEC joints were analyzed. For the direct diffusion bonding, reliable joints with a shear strength of 146 MPa could be achieved when the bonding temperature reached 1500 °C under a pressure of 30 MPa. By introducing a metallic Ni foil as the interlayer, the HEC was successfully bonded at the diffusion temperatures from 1150 °C to 1250 °C under 10 MPa through the formation of Ti2Ni compound phase. Meanwhile, the HEC(Ni) phase formed by the diffusion of Ni into HEC and Ni(s, s) bulks precipitated in the bonding transition zone. The maximum joint shear strength of 151 MPa was obtained by optimizing the Ni-foil thickness, bonding temperature, and holding time.  相似文献   

6.
7.
A new high-entropy diboride (Hf0.25Zr0.25Ta0.25Sc0.25)B2 was designed to investigate the effect of introducing rare-earth metal diboride ScB2 into high-entropy diborides on its structure and properties. The local mixing enthalpy predicts that (Hf0.25Zr0.25Ta0.25Sc0.25)B2 has high enthalpy driving force, which more easily allows the formation of single-phase AlB2-type structures between components. The experiments further demonstrate that (Hf0.25Zr0.25Ta0.25Sc0.25)B2 possesses excellent phase stability, lattice integrity and nanoscale chemical homogeneity. (Hf0.25Zr0.25Ta0.25Sc0.25)B2 showed relatively high hardness (30.7 GPa), elastic modulus (E, G, and B of 522, 231 and 233 GPa, respectively), bending strength (454 MPa), and low thermal conductivity (13.9 W·m?1·K?1). The thermal expansion of (Hf0.25Zr0.25Ta0.25Sc0.25)B2 is higher than that of ZrB2 and HfB2 due to weakened bonding (M d - B p and M dd bonding) and enhanced anharmonic effects. Thus, incorporating Sc into high-entropy diborides can tailor the properties associated with the bonding, which further expands the compositional space of high-entropy diborides.  相似文献   

8.
High-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics, with different carbon contents (x=0.55?1), were prepared by spark plasma sintering using powders synthesized via a carbothermal reduction approach. Single-phase, high-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics could be obtained when using a carbon content of x=0.70?0.85. Combined ZrO2 and Mo-rich carbide phases, or residual graphite, existed in the ceramics due to either a carbon deficiency or excess at x=0.55 and 1, respectively. With the carbon content increased from x=0.70 to x=0.85, the grain size decreased from 4.36 ± 1.55 μm to 2.00 ± 0.91 μm, while the hardness and toughness increased from 23.72 ± 0.26 GPa and 1.69 ± 0.21 MPa·m1/2 to 25.45 ± 0.59 GPa and 2.37 ± 0.17 MPa·m1/2, respectively. This study showed that the microstructure and mechanical properties of high-entropy carbide ceramics could be adjusted by the carbon content. High carbon content is conducive to improving hardness and toughness, as well as reducing grain size.  相似文献   

9.
The relationships between microstructures and mechanical properties especially strength and toughness of high-entropy carbide based ceramics are reported in this article. Dense (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C (HEC) and its composite containing 20 vol.% SiC (HEC-20SiC) were prepared by spark plasma sintering. The addition of SiC phase enhanced the densification process, resulting in the promotion of the formation of the single-phase high-entropy carbide during sintering. The high-entropy carbide phase demonstrated a fast grain coarsening but SiC particles remarkably inhibited this phenomena. Dense HEC and HEC-20SiC ceramics sintered at 1900 °C exhibits four-point bending strength of 332 ± 24 MPa and 554 ± 73 MPa, and fracture toughness of 4.51 ± 0.61 MPa·m1/2 and 5.24 ± 0.41 MPa·m1/2, respectively. The main toughening mechanism is considered to be crack deflection by the SiC particles.  相似文献   

10.
《Ceramics International》2023,49(7):10280-10286
Using pre-synthesized high-entropy (Ta0.2W0.2Nb0.2Mo0.2V0.2)C carbide as the reinforcing phase, Ti(C0.7N0.3)-based cermets were prepared by pressureless sintering at 1600 °C. The results revealed that due to the solid solution reaction between the mono-carbide and (Ta0.2W0.2Nb0.2Mo0.2V0.2)C, only one set of face-centered-cubic diffraction peaks in XRD was detected in the as-sintered cermets, alongside the typical core-rim structure. Compared to the Ti(C0.7N0.3)-based cermets without high-entropy reinforcing phase, the Vickers hardness was increased from 17.06 ± 0.09 GPa to 18.42 ± 0.33 GPa and the fracture toughness was increased from 9.21 ± 0.31 MPa m1/2 to 12.56 ± 0.23 MPa m1/2 by adding 10 wt% (Ta0.2W0.2Nb0.2Mo0.2V0.2)C. The wear resistance of the cermet was enhanced significantly with increasing (Ta0.2W0.2Nb0.2Mo0.2V0.2)C content. This work provided a potential that the high-entropy carbide can be applied as an effective reinforcing phase in the preparation of high-performance Ti(C0.7N0.3)-based cermets.  相似文献   

11.
Owing to the high melting points and high-temperature stability, transition-metal disilicides are potential components for aerospace, automotive, and industrial engineering applications. However, unwanted oxidation known as PEST oxidation severely limits their application owing to the formation of volatile transition metal oxides, especially in the temperature range of 500–1000 °C. To overcome this problem, a new class of high-entropy disilicides, (Mo0.2Nb0.2Ta0.2V0.2W0.2)Si2, was selected by first-principles calculations and then successfully fabricated using a hot-pressing sintering technique. Furthermore, the phase evolution, thermal expansion behavior, thermal conductivity, and oxidation behavior were systematically investigated. Compared with MoSi2, (Mo0.2Nb0.2Ta0.2V0.2W0.2)Si2 possessed a lower thermal conductivity (10.9–14.7 W·m?1·K?1) at 25–1000 °C, higher thermal expansion coefficients (8.6 ± 1.3–6 K–1) at 50–1200 °C, and especially an excellent thermal stability at 500–1000 °C owing to slow diffusion and selective oxidation. This work provides a strong foundation for the synthesis and application of high-entropy disilicides.  相似文献   

12.
High-entropy perovskite thin films, as the prototypical representative of the high-entropy oxides with novel electrical and magnetic features, have recently attracted great attention. Here, we reported the electronic structure and charge transport properties of sol-gel-derived high-entropy Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 thin films annealed at various temperatures. By means of X-ray photoelectron spectroscopy and absorption spectrum, it is found that the conduction-band-minimum shifts downward and the valence-band-maximum shifts upward with the increase of annealing temperature, leading to the narrowed band gap. Electrical resistance measurements confirmed a semiconductor-like behavior for all the thin films. Two charge transport mechanisms, i.e., the thermally-activated transport mechanism at high temperatures and the activation-less transport mechanism at low temperatures, are identified by a self-consistent analysis method. These findings provide a critical insight into the electronic band structure and charge transport behavior of Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3, validating it as a compelling high-entropy oxide material for future electronic/energy-related technologies.  相似文献   

13.
This study demonstrates that 20% of a rare-earth (RE) diboride (ErB2) can be stabilized in a high-entropy transition metal (TM) diboride, despite the dissimilar chemical properties of RE and TM elements and large differences in lattice parameters of ErB2 and typical TMB2. However, the phase formation depends on the fabrication route, which is a noteworthy observation. Specifically, single-phase (Ti0.2Zr0.2Hf0.2Ta0.2Er0.2)B2 is synthesized via reactive spark plasma sintering (SPS) using elemental boron and metal elements. In contract, a specimen made by borocarbothermal reduction of binary oxides and SPS possess significant amounts of two Er-rich secondary phases. Notably, the RE addition in high-entropy TM diboride leads to improved hardness. Aberration-corrected scanning transmission electron microscopy (AC STEM) and energy-dispersive X-ray spectroscopy (EDS) elemental analyses further reveal significant Er segregation at grain boundaries. This work suggests that high-entropy ceramics can have significant solubilities of dissimilar components that may enable new, tunable, and improved properties.  相似文献   

14.
Fully dense high-entropy carbide (HEC) ceramic has been prepared from a mixture of the group IV and V transition metal oxides by a two-step technique, which involved the vacuum carbosilicothermic reduction (VCSTR) synthesis of a composite powder containing 75 vol.% HEC, 20 vol.% (Nb1-xMex)Si2 (where Me = Ti, Zr, Hf, Ta), and 5 vol.% SiC followed by hot pressing of the as-synthesized product. It was found that the reaction between (Nb1-xMex)Si2 and HEC took place during hot pressing, thereby allowing effective sintering to occur. The mechanical properties of the obtained nearly single-phase HEC ceramic were comparable to or even slightly better than those of HEC ceramics prepared by other methods. The use of VCSTR synthesis as a key step in the preparation of fully dense HEC ceramic was concluded to be effective both in lowering the sintering temperature and in improving the mechanical properties.  相似文献   

15.
In this work, Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites were reported for the first time. Based on the systematic study of the pyrolysis and solid-solution mechanisms of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C precursor by Fourier transform infrared spectroscopy, TG-MS and XRD, Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC with uniform phase and element distribution were successfully fabricated by precursor infiltration and pyrolysis. The as-fabricated composites have a density and open porosity of 2.40 g/cm3 and 13.32 vol% respectively, with outstanding bending strength (322 MPa) and fracture toughness (8.24 MPa m1/2). The Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC composites also present excellent ablation resistant property at a heat flux density of 5 MW/m2, with linear and mass recession rates of 2.89 μm/s and 2.60 mg/s respectively. The excellent combinations of mechanical and ablation resistant properties make the Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC composites a new generation of reliable ultra-high temperature materials.  相似文献   

16.
The influences of different contents ranging 0–15 wt% of high-entropy boride (HEB) (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 on the mechanical properties of SiC-based ceramics using Al2O3-Y2O3 sintering additives sintered by spark plasma sintering process were investigated in this study. The results showed that the introduction of 5 and 10 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 could facilitate the densification and the grain growth of SiC-based ceramics via the mechanism of liquid phase sintering. However, the grain growth of SiC-based ceramics was inhibited by the grain boundary pinning effect with the addition of 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2. The SiC-based ceramics with 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 showed the enhanced hardness (21.9±0.7 GPa) and high toughness (4.88±0.88 MPa·m1/2) as compared with high-entropy phase-free SiC-based ceramics, which exhibited a hardness of 16.6 GPa and toughness of 3.10 MPa·m1/2. The enhancement in mechanical properties was attributed to the addition of higher hardness of HEB phase, crack deflection toughening mechanism, and presence of residual stress due to the mismatch of coefficient of thermal expansion.  相似文献   

17.
High-entropy carbides (HECs) are paid great attention owing to superior properties, and various fabrication methods have been used to date to produce high-quality material. Here, a novel approach, in the case of HECs, is used to prepare powder and bulk (Ti,Zr,Hf,Nb,Ta)C: the calcium-hydride reduction (CHR) of oxides, followed by pressureless sintering (PS) and spark plasma sintering (SPS). The material obtained is characterized via TEM, SEM, and XRD. It has been shown that the CHR provides the formation of the nano-sized powder with a multiphase structure consisting of binary carbides. Subsequent PS and SPS lead to the formation of a single-phase structure; however, porosity differs significantly. As a bulk state, (Ti,Zr,Hf,Nb,Ta)C exhibits typical high hardness (20.4 GPa) and good fracture toughness (4.2 MPa∙m1/2). The results have shown that calcium-hydride reduction process, with proper development, can provide a new cost-effective technology for the synthesis of nano and submicron powders of high-entropy carbides.  相似文献   

18.
In the current work, fine-grained dual-phase, high-entropy ceramics (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with different phase ratios were prepared from powders synthesized via a boro/carbothermal reduction approach, by adjusting the content of B4C and C in the precursor powders. Phase compositions, densification, microstructure, and mechanical properties were investigated and correlated. Due to the combination of pinning effect and the boro/carbothermal reduction approach, the average grain size (~0.5?1.5 μm) of the dual-phase high-entropy ceramics was roughly one order of magnitude smaller than previously reported literature. The dual-phase high-entropy ceramics had residual porosity ranging from 0.3 to 3.2 % upon sintering by SPS and the material with about 18 vol% boride phase exhibited the highest Vickers hardness (24.2±0.3 GPa) and fracture toughness (3.19±0.24 MPam1/2).  相似文献   

19.
《Ceramics International》2023,49(20):33255-33264
As the high-entropy design concept applied to the diboride ceramic system, high-entropy diboride ceramics with a wide range of composition control, is expected to become a new high-performance material for extreme high-temperature environments. Herein, the effects of four transition metal elements (Nb, Ti, Cr, W) on the phase stability and properties of (Hf, Zr, Ta)B2-based high-entropy diboride ceramics are systematically investigated via the first-principles calculations. All components were identified as thermodynamically, mechanically and dynamically stable from enthalpy of formation, elastic and phonon spectrum calculations. Among these, compared with the (Hf, Zr, Ta)B2 ceramics, the addition of Nb and Ti on the metal sublattice is beneficial to improve the mechanical properties of ceramics, including Young's modulus, hardness and fracture toughness, while the introduction of Cr and W weakens the strength of covalently and ionic bonds inside the material, reducing its mechanical properties. The predicted thermophysical properties show that the high-entropy diboride ceramics containing Nb and Ti have better high-temperature comprehensive performance, including higher Debye temperature, thermal conductivity and lower thermal expansion characteristics, which is conducive to the application in extreme high-temperature environments. This research will provide important guidance for the design and development of new high-performance high-entropy diboride ceramics.  相似文献   

20.
High-entropy metal carbides have recently been arousing considerable interest. Nevertheless, their high-temperature oxidation behavior is rarely studied. Herein the high-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy metal carbide (HEC-1) was investigated at 1573-1773 K in air for 120 minutes. The results showed that HEC-1 had good oxidation resistance and its oxidation obeyed a parabolic law at 1573-1673 K, while HEC-1 was completely oxidized after isothermal oxidation at 1773 K for 60 minutes and thereby its oxidation followed a parabolic-linear law at 1773 K. An interesting triple-layered structure was observed within the formed oxide layer at 1673 K, which was attributed to the inward diffusion of O2 and the outward diffusion of Ti element and CO or CO2 gaseous products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号