首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(5):7223-7235
A novel double perovskite BaSrYZrO5.5:Eu3+ red-emitting phosphor was synthesized and characterized by XRD, SEM and PL analyses. The structure of the prepared phosphor was confirmed through JCPDS as well as Rietveld refinement analysis. The present phosphor shows an intense red emission at 613 nm when excited by 394 nm. The CIE colour coordinates value of BaSrYZrO5.5:Eu3+ (9 mol%) phosphor is found to be (0.6181, 0.3783) and it has high colour purity of 99.1%. The 613 nm transition integrated intensity of the present phosphor is 4.44 times higher compared to the commercial red phosphor. The thermal stability and Quantum yield of optimized BSYZ:Eu3+ (9 mol%) phosphor were also calculated. The BSYZ:Eu3+ phosphor results can be employed as an efficient red component in latent fingerprint detection and anti-counterfeiting applications.  相似文献   

2.
The SrSi2O2N2:Eu2+ green-emitting phosphor, as a member of oxynitride phosphors, could greatly enhance the color quality of the white-light conversed by single yellow-emitting phosphor. However, SrSi2O2N2:Eu2+ phosphors prepared by traditional solid-state ways normally consist hard agglomerates with unevenly dispersed particles and therefore suppress the luminescence properties. This research proposes a heterogeneous precipitation protocol where precipitation process is introduced, in order to produce a precursor in the first phase. And in the second phase, a high-temperature solid-state process is adopted for obtaining the final product. The main results show that, for an optimized SrSi2O2N2:Eu2+ phosphor prepared using our protocol, (1) the SrSi2O2N2:Eu2+ particles are faceted and with smooth faces and (2) the phosphor photoluminescence, external quantum efficiency, stability against thermal exposure, and physical stability consistently outperform the current commercially used product. This research essentially provides an economic way for production of solid-state lighting with enhanced color quality.  相似文献   

3.
In recent years, key study was designing nanomaterials (NMs) with tunable properties in order to obtain high functional materials. For this purpose, an attempt with great effort has been put forward to synthesize ZrO2:Eu:Li (1–11 mol%) NM with varying concentration of Li+ ion that can have a control over phase, size, morphology, crystallinity, band gap and surface chemistry. More importantly, addition of Li as codopant influences the phase and crystallinity change with the change in concentration. However important challenges faced by this work was to understand the phase change, crystallinity, structural change and photocatalytic activity which has to be still explored. The synthesized NMs possess mixed phase and cubic phase with change in concentration of codopant which may be attributed to presence of defect states, micro strain, distortion of lattice. The energy band gap was found to decrease for 7 mol% NM attributed to the change in the phase. Porous morphology with variation in pore length was observed. Enhanced luminescence intensity with intense orange red emissions consistent to 5D07Fj (j = 0 to 4) intra configurational f-f transitions was observed for ZrO2:Eu:Li+(1–11 mol%) nanophosphor excited at 394 nm. The visualization of latent fingerprints using ZrO2: Eu: Li+7mol% nanophosphor on several surfaces, the powder dusting technique was adopted. The enhanced fingerprint under UV light provides well resolved ridge patterns for the identification of individual latent finger prints using ZrO2:Eu:Li (7 mol%) with clear resolution. Lower charge transfer resistance with enhanced photocatalytic activity for decolourization of Rhodamine B with high pore length to allow multiple reflections under UV light irradiation for 7 mol% NM with reduced band gap and optimum luminescence intensity was observed. Hence, the synthesized ZrO2:Eu:Li (7 mol%) can be employed in forensic science towards latent fingerprint development, as a photocatalyst for environmental remediation and as luminescent material in display applications.  相似文献   

4.
《Ceramics International》2016,42(12):13648-13653
A series of Li3Ba2Y3−x(WO4)8:xEu3+ (x=0.1, 1, 1.5, 2 and 2.8) phosphors were synthesized by a high temperature solid-state reaction method. Under the excitation of near ultraviolet (NUV) light, the as-prepared phosphor exhibits intense red luminescence originating from the characteristic transitions of Eu3+ ions, which is 1.8 times as strong as the commercial Y2O2S:Eu3+ phosphor. The optimal doping concentration of Eu3+ ions here is confirmed as x=1.5. The electric dipole-quadrupole (D-Q) interaction is deduced to be responsible for concentration quenching of Eu3+ ions in the Li3Ba2Y3(WO4)8 phosphor. The analysis of optical transition and Huang-Rhys factor reveals a weak electron-phonon coupling interaction. The temperature-dependent emission spectra also indicate that the as-prepared Li3Ba2Y3(WO4)8:Eu3+ phosphor has better thermal stability than that of the commercial Y2O2S:Eu3+ phosphor. Therefore, our results show that the as-prepared Li3Ba2Y3(WO4)8:Eu3+ phosphor is a promising candidate as red emitting component for white light emitting diodes (LEDs).  相似文献   

5.
Chemical stability of phosphors is critical to the efficiency and lifetime of the white light-emitting diodes. Therefore, many strategies have been adopted to improve the stability of phosphors. However, it is still lack of report on the improvement of thermal stability and hydrolysis resistance of phosphors by a single layer coating. Due to the high transmittance and high chemical inertness of graphene, it was coated on the surface of Sr2Si5N8:Eu2+ phosphor by chemical vapor deposition, aiming to improve its thermal stability and hydrolysis resistance. The chemical composition and microstructure of the coating were characterized and analyzed. A nanoscale carbon layer was attached on the surface of Sr2Si5N8:Eu2+ phosphor particles in an amorphous state. In coated Sr2Si5N8:Eu2+ phosphor, the oxidation degree of Eu2+ to Eu3+ was significantly suppressed. At the same time, the surface of Sr2Si5N8:Eu2+ particle turned from hydrophilic to hydrophobic after carbon coating, and consequently the hydrolysis resistance of Sr2Si5N8:Eu2+ phosphor was greatly improved. After tests at 85 °C and 85% humidity for 200 h, the carbon coated Sr2Si5N8:Eu2+ phosphor still maintained about 95% of its initial luminous intensity as compared with 35% of the uncoated. By observing the in-situ microstructure evolution of coated phosphor in air-water vapor environment, remained presence of the carbon layer even at 500 °C explained the excellent chemical stability of carbon coated Sr2Si5N8:Eu2+ phosphor in complex environment. These results indicate that a nanoscale carbon layer can be used to provide superior thermal stability and hydrolysis resistance of (oxy) nitrides phosphors.  相似文献   

6.
At present, latent fingerprint and anti-counterfeit detection technologies have become key factors in forensic science. Here, we report on the synthesis and characterizations of Eu3+ ions doped monoclinic Gd2MoO6 nanophosphors for latent fingerprints and anti-counterfeiting applications. The crystalline structure, phase purity and lattice parameters of Gd2MoO6:Eu3+ nanophosphors were investigated in detail using the X-ray diffraction and Rietveld refinement analyses. The photoluminescence excitation spectra of Gd2MoO6:Eu3+ nanophosphor unveiled their strong charge transfer band and characteristic f-f transitions of Eu3+ ions in the UV and near-UV regions. Whereas, the corresponding emission spectra showed an intense red emitting hypersensitive transition (5D07F2) with excellent CIE coordinates (0.6503, 0.3490). The concentration quenching of Eu3+ ions in Gd2MoO6 host lattice was observed at 5?mol%. The optimized Gd2MoO6:Eu3+ nanophosphor was used to detect the latent fingerprints and anti-counterfeits. The developed latent fingerprints fluorescent images enabled three levels of identifications with high contrast, selectivity and sensitivity. Also anti-counterfeit marker was successfully developed through handwriting and spray method. The obtained results of the synthesized Gd2MoO6:Eu3+ nanophosphors signifying their potential use in latent fingerprint and anti-counterfeit applications.  相似文献   

7.
《Ceramics International》2022,48(22):33143-33150
Bi3+ ions can regulate and control the fluorescence of a phosphor by transferring energy to the activating agent or occupying different luminescent centers, which is important for modifying phosphors and revealing fluorescence mechanisms. As a base material, Sr3Al2O5Cl2 has three types of Sr sites (Sr 1, Sr 2, and Sr 3) that may be occupied by Bi3+ ions (Sr2+ has a similar radius to Bi3+). Herein, we successfully synthesized a series of Sr3Al2O5Cl2:x%Bi3+ phosphors using the high-temperature solid-state method and determined a two-site-occupying emission mechanism. X-ray diffraction patterns indicated that the samples were synthesized well, and Rietveld refinement results provided their structural information. Photoluminescence spectra showed 490 nm (λex = 345 nm) and 556 nm (λex = 376 nm) emission peaks, which might arise from different luminescent centers. The concentration quenching study, peak separation analysis, fluorescence lifetime spectra, and diffuse reflection spectra indicated that the Bi3+ ions occupied two of the three Sr sites. Calculations of relative system energies and distortion index proved that the occupation only occurred in the Sr 1 and Sr 3 sites, and crystal splitting analysis determined that Sr 1 site generated 490 nm emission light and Sr 3 site generated 556 nm emission light. The charge compensator and flux were added to enhance the fluorescence intensity of the phosphor, and 5% K+ along with 1% BaF2 is the optimal dosage. Finally, the SrAlSiN3:Eu2+, BaMgAl10O17:Eu2+, and optimized Sr3Al2O5Cl2:5%Bi3+ phosphors were combined as a luminous layer and a warm-white light-emitting diode was realized; the color rendering indices were 84.3, 85.8, 86.4, and 86.2 under working currents of 20, 30, 40, and 50 mA, respectively.  相似文献   

8.
Undoped and Eu3+‐doped tetragonal tungsten bronze (TTB) PbTa2O6 phosphors were synthesized by using solid‐state reaction method. Synthesized samples were characterized by XRD, SEM‐EDS, and photoluminescence analyses. XRD results revealed TTB‐type crystal structure with single phase up to 10 mol% Eu3+ doping concentration. In SEM‐EDS analyses, elemental composition of Pb decreased with the increasing concentration of Eu3+. Emissions at the excitation wavelength of 398.5 nm were observed at 593.2 and 618.8 nm due to 5D07F1 transitions and 5D07F2 transitions, respectively. Emission increased with the increasing Eu3+ doping concentration up to 10 mol% and not observed concentration quenching.  相似文献   

9.
A series of Ba2B2O5: RE (RE=Ce3+/Tb3+/Sm3+) phosphors were synthesized using high‐temperature solid‐state reaction. The X‐ray diffraction (XRD), luminescent properties, and decay lifetimes are utilized to characterize the properties of the phosphors. The obtained phosphors can emit blue, green, and orange‐red light when single‐doped Ce3+, Tb3+, and Sm3+. The energy can transfer from Ce3+ to Tb3+ and Tb3+ to Sm3+ in Ba2B2O5, but not from Ce3+ to Sm3+ in Ce3+ and Sm3+ codoped in Ba2B2O5. However, the energy can transfer from Ce3+ to Sm3+ through the bridge role of Tb3+. We obtain white emission based on energy transfer of Ce3+→Tb3+→Sm3+ ions. These results reveal that Ce3+/Tb3+/Sm3+ can interact with each other in Ba2B2O5, and Ba2B2O5 may be a potential candidate host for white‐light‐emitting phosphors.  相似文献   

10.
Cyan-emitting phosphors have attracted widespread attention as an integral part to realize full-spectrum lighting. Understanding the site occupation of luminescence centers is of great importance to design and clarify the luminescent mechanism for new cyan-emitting phosphors. Here, we report a cyan-emitting phosphor Ca18Na3Y(PO4)14:Eu2+ synthesized by the high-temperature solid-state method. The crystal structure is characterized by X-ray diffraction and refined by the Rietveld method. The diffuse reflectance spectra, excitation/emission spectra, fluorescence decay curves, thermal stability, and related mechanism are systematically studied. The results show that Ca18Na3Y(PO4)14:Eu2+ crystallizes in a trigonal crystal system with space group R3c. Under excitation at 350 nm, a broadband cyan emission can be obtained at 500 nm with a half-width of about 120 nm, which is caused by Eu2+ occupying five different sites in host, namely, Na2O12 (450 nm), (Ca3/Na1)O8 (485 nm), Ca2O8 (515 nm), Ca1O7 (565 nm), and (Ca4/Y)O6 (640 nm), respectively. Moreover, crystal structure, room and low temperature spectroscopy, and luminescence decay time are used to skillfully verify the site-selective occupation of Eu2+. Finally, a full-spectrum light-emitting diode (LED) lamp is fabricated with an improved color rendering index (∼90.3), CCT (∼5492 K), and CIE coordinates (0.332, 0.318). The results show that Ca18Na3Y(PO4)14:Eu2+ has the potential to act as a cyan emission phosphor for full-spectrum white LEDs.  相似文献   

11.
A single‐phase full‐color emitting phosphor Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ has been synthesized by high‐temperature solid‐state method. The crystal structure is measured by X‐ray diffraction. The emission can be tuned from blue to green/red/white through reasonable adjustment of doping ratio among Eu2+/Tb3+/Mn2+ ions. The photoluminescence, energy‐transfer efficiency and concentration quenching mechanisms in Eu2+‐Tb3+/Eu2+‐Mn2+ co‐doped samples were studied in detail. All as‐obtained samples show high quantum yield and robust resistance to thermal quenching at evaluated temperature from 30 to 200°C. Notably, the wide‐gamut emission covering the full visible range of Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ gives an outstanding thermal quenching behavior near‐zero thermal quenching at 150°C/less than 20% emission intensity loss at 200°C, and high quantum yield‐66.0% at 150°C/56.9% at 200°C. Moreover, the chromaticity coordinates of Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ keep stable through the whole evaluated temperature range. Finally, near‐UV w‐LED devices were fabricated, the white LED device (CCT = 4740.4 K, Ra = 80.9) indicates that Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ may be a promising candidate for phosphor‐converted near‐UV w‐LEDs.  相似文献   

12.
《Ceramics International》2016,42(16):18536-18546
In the present paper, an investigation on the structural and photoluminescence (PL) properties of SrGd2O4:Eu3+ ceramic phosphors synthesized by homogeneous precipitation method followed by combustion process has been reported. The samples, annealed at 1200 °C, were crystallized into orthorhombic phase without any impurities. Microscopic studies revealed the irregular morphology of the obtained ceramic phosphor particles having sizes in the range of 0.3–3 µm. The characteristic photoluminescence properties and decay curves were studied in detail as a function of Eu3+ concentration and temperature. The Eu3+ doped ceramic samples illuminated with UV light revealed the characteristic red luminescence corresponding to 5D07FJ transitions of Eu3+. The concentration quenching phenomenon of Eu3+ ions in the present host, analyzed in the light of ion-ion interaction, indicated multipolar interaction between Eu3+ ions. Finally, the intensity parameters (Ω2, Ω4) and various radiative properties such as stimulated emission cross-section (σe), gain band-width (σe×Δλeff) and optical gain (σe×τexp) of Eu3+ in the SrGd2O4 ceramic phosphors have been calculated by using Judd-Ofelt theory. The present phosphor system exhibited efficient red emission with high red color purity (95%) and adequate thermal stability even at 200 °C. Present research broadly indicated the suitability of SrGd2O4:Eu3+ ceramic phosphor for display applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号