首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The nanomechanical deformations on glass surfaces near the elastic–plastic load boundary have been measured on various glasses by nanoscratching using an atomic force microscope (AFM) to mimic the mechanical interactions of polishing particles during optical polishing. Nanoscratches were created in air and aqueous environments using a 150‐nm radius diamond‐coated tip on polished fused silica, borosilicate, and phosphate glass surfaces; the topology of the nanoscratches were then characterized by AFM. Using load ranges expected on slurry particles during glass polishing (0.05–200 μN), plastic‐type scratches were observed with depths in the nm range. Nanoscratching in air generally showed deeper & narrower scratches with more pileup compared to nanoscratching in water, especially on fused silica glass. The critical load needed to observe plastic deformation was determined to range from 0.2–1.2 μN for the three glasses. For phosphate glass, the load dependence of the removal depth was consistent with that expected from Hertzian mechanics. However, for fused silica and borosilicate glass in this load range, the deformation depth showed a weak dependence with load. Using a sub‐Tg annealing technique, material relaxation was observed on the nanoscratches, suggesting that a significant fraction of the deformation was due to densification on fused silica and borosilicate glass. Repeated nanoscratching at the same location was utilized for determining the effective incremental plastic removal depth. The incremental removal depth decreased with increase in number of passes, stabilizing after ~10 passes. In water, the removal depths were determined as 0.3–0.55 nm/pass for fused silica, 0.85 nm/pass for borosilicate glass, and 2.4 nm/pass for phosphate glass. The combined nanoscratching results were utilized to define the composite removal function (i.e., removal depth) for a single polishing particle as a function of load, spanning the chemical to the plastic removal regimes. This removal function serves as an important set of parameters in understanding material removal during polishing and the resulting workpiece surface roughness.  相似文献   

2.
Surface quality of fused silica, particularly surface defect and surface roughness, is a key factor affecting the performance of high-power laser and short-wave optical instrument, and so on. Herein, the super smooth surface of fused silica with roughness of sub-angstrom level and exceedingly few submicron defects was achieved by using ultrafine nano-CeO2 with primary particle size less than 4 nm, low secondary particle agglomeration strength, and high Ce3+ concentration. Furthermore, CeO2 involve in polishing process in the form of primary particle was certified by experiment. Moreover, the cause for the generation of submicron defects on fused silica surface was investigated for the first time from the perspective of secondary particle agglomeration strength of CeO2. The concentration of Ce3+ in CeO2 was characterized by the redshift of the band-gap energy, and the analysis of material removal rate (MRR) and contact angle of polished fused silica shows that Ce3+ enhances MRR through increasing the silanol group on fused silica.  相似文献   

3.
Various ceria and colloidal silica polishing slurries were used to polish fused silica glass workpieces on a polyurethane pad. Characterization of the slurries' particle size distribution (PSD) (using both ensemble light scattering and single particle counting techniques) and of the polished workpiece surface (using atomic force microscopy) was performed. The results show the final workpiece surface roughness is quantitatively correlated with the logarithmic slope of the distribution function for the largest particles at the exponential tail end of the PSD. Using the measured PSD, fraction of pad area making contact, and mechanical properties of the workpiece, slurry, and pad as input parameters, an Ensemble Hertzian Gap (EHG) polishing model was formulated to estimate each particle's penetration, load, and contact zone. The model is based on multiple Hertzian contact of slurry particles at the workpiece–pad interface in which the effective interface gap is determined through an elastic load balance. Separately, ceria particle static contact and single pass sliding experiments were performed showing ~1‐nm depth removal per pass (i.e., a plastic type removal). Also, nanoindentation measurements on fused silica were made to estimate the critical load at which plastic type removal starts to occur (Pcrit~5 × 10?5 N). Next the EHG model was extended to create simulated polished surfaces using the Monte Carlo method where each particle (with the calculated characteristics described above) slides and removes material from the silica surface in random directions. The polishing simulation utilized a constant depth removal mechanism (i.e., not scaling with particle size) of the elastic deformation zone cross section between the particle and silica surface, which was either 0.04 nm (for chemical removal) at low loads (<Pcrit) or 1.0 nm (for plastic removal) at intermediate loads (>Pcrit). The simulated surfaces quantitatively compare well with the measured rms roughness, power spectra, surface texture, absolute thickness material removal rate, and load dependence of removal rate.  相似文献   

4.
《Ceramics International》2020,46(15):23828-23833
Zirconia ceramic, as mobile phone body-materials, will become increasingly important with the coming of 5G communication technology. Surface quality and material removal rate of zirconia ceramic cover are vital factors to determine its wide application. Therefore, mixed-shaped silica sol abrasives were prepared by ion connecting-inducting method and applied to achieve a good surface quality and a high material removal rate on zirconia ceramic cover by using chemical mechanical polishing (CMP). Mixed-shaped silica sol abrasives contained spherical and beaded shapes were measured by scanning electron microscopy (SEM). Si–O–Al bonds were formed in the mixed-shaped silica sol abrasives and were proved by X-ray photoelectron spectroscopy (XPS). Results of CMP tests showed that zirconia ceramic cover obtained a low surface roughness of 1.824 nm and an efficient material removal rate of 0.33 μm/h. Compared with traditional spherical silica sol abrasives, the polishing rate of mixed-shaped silica sol abrasives increased by 242%. Additionally, solid-phase chemical reactions happened to formed ZrSiO4, ZrAl2Si2O9 in the CMP process. Moreover, friction coefficient was tested and polishing mechanism had been explored by a contact-friction model in this work.  相似文献   

5.
In this work, the polishing‐induced contamination layer at the fused silica optics surface was studied with various interface analysis techniques: Secondary Ion Mass Spectroscopy (SIMS), Electron Probe Microanalysis (EPMA), X‐Ray Photoelectron Spectroscopy (XPS), and Inductively Coupled Plasma—Optical Emission Spectroscopy (ICP‐OES). Samples were prepared using an MRF polishing machine and cerium‐based slurry. The cerium and iron penetration and concentration were measured in the surface out of defects. Cerium is embedded at the surface in a 60 nm layer and concentrated at 1200 ppmw in this layer while iron concentration falls down at 30 nm. Spatial distribution and homogeneity of the pollution were also studied in the scratches and bevel using SIMS and EPMA techniques. We saw evidence that surface defects, such as scratches, are specific places that hold the pollutants. This overconcentration is also observed in the chamfer. These new insights into the polishing‐induced contamination of fused silica optics and it repartition have been obtained using various characterization methods. Advantages and disadvantages of each one are discussed.  相似文献   

6.
《Ceramics International》2020,46(4):4670-4678
For abrasive particles, the type, morphology, structure, size and distribution, physio-chemical properties are usually considered as key influential factors which determine the ultra-precision polishing performance. It is commonly recognized that the structure design, surface modification, and doping treatment of abrasives contribute to achieving high-quality and high-efficiency polishing. Herein, we report the fabrication of sub-100 nm monodispersed dendritic-like mesoporous silica (D-mSiO2) with tunable structures via an oil-water biphase stratification approach. A CeO2 thin shell was subsequently coated on the D-mSiO2 nanospheres forming core/shell structured D-mSiO2/CeO2 composites. The samples were examined via XRD, SEM, TEM, SAED, DLS, FTIR, and nitrogen adsorption-desorption measurements. The polishing characteristics of the D-mSiO2/CeO2 nano-abrasives over silica films were tracked by atomic force microscopy and noncontact interferometric microscopy. Compared with commercial ceria particles, the obtained D-mSiO2/CeO2 nano-abrasives were favorable for mechanical scratch elimination and removal rate enhancement. Furthermore, an enlarged pore volume or porosity of D-mSiO2 cores achieved an atomic-scale surface with relatively low roughness, less variation, and enhanced removal rate. The mechanism of high-efficiency and defect-free polishing for the CeO2-based composites was discussed. These results may provide promising guidance in the design and optimization of novel particle abrasives.  相似文献   

7.
Fused silica optics used in lasing systems requires a high laser-induced damage resistance. Processes typically used to polish fused silica lenses induce subsurface and surface damage that collect ceria abrasive, creating a layer of contamination. The contamination can be a precursor to laser damage during use. A preliminary study showed the feasibility of magnetic field-assisted finishing (MAF) for polishing fused silica and suggested possible beneficial effects of the MAF-polished surface on the laser-induced damage threshold (LIDT). This paper proposes a method to examine the fundamental polishing characteristics of MAF for fused silica. Using the proposed method, this paper explores the material removal characteristics of the MAF process and improves the understanding of the MAF polishing mechanism. The 45% improvement of LIDT shows the efficacy of MAF for removing the contamination layer of fused silica surfaces with minimal changes in the surface roughness.  相似文献   

8.
During optical glass polishing, a number of interactions between the workpiece (i.e., glass), polishing slurry, and pad can influence the resulting workpiece roughness at different spatial scale lengths. In our previous studies, the particle size distribution of the slurry, the pad topography, and the amount of material removed by a single particle on the workpiece were shown to strongly correlate with roughness at AFM scale lengths (nm‐μm) and weakly at μ‐roughness scale lengths (μm‐mm). In this study, the polishing slurry pH and the generation of glass removal products are shown to influence the slurry particle spatial and height distribution at the polishing interface and the resulting μ‐roughness of the glass workpiece. A series of fused silica and phosphate glass samples were polished with various ceria and colloidal silica slurries over a range of slurry pH, and the resulting AFM roughness and μ‐roughness were measured. The AFM roughness was largely invariant with pH, suggesting that the removal function of a single particle is unchanged with pH. However, the μ‐roughness changed significantly, increasing linearly with pH for phosphate glass and having a maximum at an intermediate pH for fused silica. In addition, the spatial and height distribution of slurry particles on the pad (as measured by laser confocal microscopy) was determined to be distinctly different at low and high pH during phosphate glass polishing. Also, the zeta potential as a function of pH was measured for the workpiece, slurry, and pad with and without surrogate glass products (K3PO4 for phosphate glass and Si(OH)4 for silica) to assess the role of interfacial charge during polishing. The addition of K3PO4 significantly raised the zeta potential, whereas addition of Si(OH)4 had little effect on the zeta potential. An electrostatic DLVO three‐body force model, using the measured zeta potentials, was used to calculate the particle–particle, particle–workpiece, and particle–pad attractive and repulsive forces as a function of pH and the incorporation of glass products at the interface. The model predicted an increase in particle–pad attraction with an increase in pH and phosphate glass products consistent with the measured slurry distribution on the pads during phosphate glass polishing. Finally, a slurry “island” distribution gap (IDG) model has been formulated which utilizes the measured interface slurry distributions and a load balance to determine the interface gap, the contact area fraction, and the load on each slurry “island”. The IDG model was then used to simulate the workpiece surface topography and μ‐roughness; the results show an increase in roughness with pH similar to that observed experimentally.  相似文献   

9.
The chemical characteristics and the proposed formation mechanisms of the modified surface layer (called the Beilby layer) on polished fused silica glasses are described. Fused silica glass samples were polished using different slurries, polyurethane pads, and at different rotation rates. The concentration profiles of several key contaminants, such as Ce, K, and H, were measured in the near surface layer of the polished samples using Secondary Ion Mass Spectroscopy (SIMS). The penetration of K, originating from KOH used for pH control during polishing, decreased with increase in polishing material removal rate. In contrast, penetration of the Ce and H increased with increase in polishing removal rate. In addition, Ce penetration was largely independent of the other polishing parameters (e.g., particle size distribution and the properties of the polishing pad). The resulting K concentration depth profiles are described using a two‐step diffusion process: (1) steady‐state moving boundary diffusion (due to material removal during polishing) followed by (2) simple diffusion during ambient postpolishing storage. Using known alkali metal diffusion coefficients in fused silica glass, this diffusion model predicts concentration profiles that are consistent with the measured data at various polishing material removal rates. On the other hand, the observed Ce profiles are inconsistent with diffusion based transport. Rather we propose that Ce penetration is governed by the ratio of Ce–O–Si and Si–O–Si hydrolysis rates; where this ratio increases with interface temperature (which increases with polishing material removal rate) resulting in greater Ce penetration into the Beilby layer. Calculated Ce surface concentrations using this mechanism are in good agreement to the observed change in measured Ce surface concentrations with polishing material removal rate. These new insights into the chemistry of the Beilby layer, combined together with details of the single particle removal function during polishing, are used to develop a more detailed and quantitative picture of the polishing process and the formation of the Beilby layer.  相似文献   

10.
To investigate the performance of a jet loop reactor with the two-fluid swirl nozzle (TSN), CO2 absorption experiments in an alkaline solution were performed. The experimental results obtained in the reactor were compared with those in a jet loop reactor with the two-fluid conventional nozzle (TCN). The neutralization time of alkaline solution and the CO2 removal efficiency were used as the indices for a comparison of the reactor performance. Due to the swirling flow, the neutralization times of alkaline solutions by CO2 in the reactor with the TSN were shortened compared with those in the reactor with the TCN. Also, the instantaneous and/or overall CO2 removal efficiencies in the reactor with the TSN were higher than those in the reactor with the TCN at the same liquid circulation flow rate.  相似文献   

11.
ABSTRACT

In coating and gravure printing, an impinging jet nozzle with high thermal efficiency for drying of coated film was developed.

Trial production 0f 40 kinds of nozzle enables to develop a high-performance impinging jet nozzle with heat transfer coefficient 1.5 times larger than that of current slit nozzle, through measurement of heat transfer coefficient, visualizations of air flow and heat transfer, and measuremenu of jet velocity and turbulence distribution. The purpose of the trial production was to expand a range of high heat transfer and promote turbulence compared with the current nozzle.

Paying attention to mass transfer within gravure ink coated film, drying characteristic of the film was analyzed by numerical solution of a set of equations governing the drying process in which concentration dependencies 0f the diffusion coefficient and the equilibrium vapor pressure were considered.

Applying these analyses. an industrial scale dryer with excellent drying efficiency has finally been developed.  相似文献   

12.
《Ceramics International》2022,48(12):17185-17195
This study introduces micro-nano bubbles (MNBs) in the process of polishing zirconia ceramics through sodium borohydride hydrolysis to assist in polishing yttria-stabilized zirconia (YSZ). Compared with conventional silica sol, the material removal rate using this MNB-assisted technology is increased by 261.4%, and a lower surface roughness of 1.28 nm can be obtained. Raman, X-ray diffraction, and X-ray photoelectron spectroscopy are used to study the structural changes and phase stability of the YSZ during different polishing periods. The results show that MNBs are the key factor promoting the transformation from the tetragonal phase to the monoclinic phase on the surface of the YSZ during polishing. The H2O molecules (or OH? ions) on the surface of the YSZ are driven by the thermal kinetic energy of the micro-jets formed by the collapse of micro-bubbles, and they permeate to occupy more oxygen vacancies in the crystal lattice. Atomic force microscopy and nano-indentation tests show that the micro-protrusions on the surface of the YSZ preferentially undergo phase transformation, and their hardness decreases. This promotes abrasives to preferentially remove rough spots on the surface and achieve more efficient polishing. We believe this work adds valuable insights regarding low-temperature degradation and ultra-precise machining of YSZ ceramic materials.  相似文献   

13.
《Ceramics International》2020,46(9):13297-13306
Zirconia ceramics are regarded as the best development target for 5G mobile phone rear covers. However, it is necessary and urgent to improve the surface quality and processing efficiency of zirconia ceramics. Non-spherical silica abrasives were prepared by the KH550 induction method and were used in chemical mechanical polishing (CMP) of zirconia ceramics for the first time. While achieving low surface roughness of 1.9 nm, it has an efficient polishing rate of 0.31 μm/h which is superior to conventional abrasives. Silica particles are peanut-shaped and heart-shaped in the scanning electron microscopy image, and its distinctive morphology provides the possibility of its excellent polishing performance. X-ray photoelectron spectroscopy analysis shows that during the CMP process, silica abrasives and zirconia ceramic undergo a solid phase chemical reaction to form ZrSiO4. At the same time, the contact wear model established in combination with the coefficient of friction indicates that the two-dimensional surface contact mode of non-spherical silica abrasives on the surface of zirconia ceramics greatly improves its mechanical effect.  相似文献   

14.
《Ceramics International》2022,48(21):31500-31508
Nondestructive machining of optical components and smoothing of surface/subsurface damage generated by pre-processing is a major challenge for ultra-tight machining. The study analyzes the crack change during smoothing by quantitative layer-by-layer removal of Vickers indentations through atmosphere pressure plasma jet; the indentation change process is modeled and analyzed using Level Set Method (LSM) simulation. The results show that plasma jet processing can smooth the subsurface damage of fused silica optical components, and the LSM simulation verifies that the processing of cracks in fused silica components by plasma jet is dominated by each isotropic etching, and there are also each anisotropic etching during the change of cracks; and the depth of adjacent cracks can be judged by the moving direction of adjacent crack boundaries.  相似文献   

15.
The nanomechanical deformations on a broad range of optical material surfaces (single crystals of Al2O3 [sapphire], SiC, Y3Al5O12 [YAG], CaF2, and LiB3O5 [LBO]; a SiO2–Al2O3–P2O5–Li2O glass-ceramics [Zerodur]; and glasses of SiO2:TiO2 [ULE], SiO2 [fused silica], and P2O5–Al2O3–K2O–BaO [Phosphate]) near the elastic-plastic load boundary have been measured by nanoindentation and nanoscratching to mimic the nanoplastic removal caused by a single slurry particle during polishing. Nanoindenation in air was performed to determine the workpiece hardness at various loads using a commercial nanoindenter with a Berkovich tip. Similarly, an atomic force microscope (AFM) with a stiff diamond coated tip (150 nm radius) was used to produce nanoplastic scratches in air and aqueous environments over a range of applied loads (~20-170 μN). The resulting nanoplastic deformation of the nanoscratches were used to calculate the removal function (i.e., depth per pass) which ranged from 0.18 to 3.6 nm per pass for these materials. A linear correlation between the nanoplastic removal function and the polishing rate (using a fixed polishing process with colloidal silica slurry on a polyurethane pad) of these materials was observed implying that: (a) the polishing mechanism using colloidal silica slurry can be dominated by mechanical rather than chemical interactions; and (b) the nanoplastic removal function, as opposed to interface particle interactions, is the controlling factor for the polishing material removal rate. Furthermore, this correlation is consistent with the Ensemble Hertzian Multi-Gap (EHMG) microscopic material removal rate model described previously. The nanoplastic removal depth was also found to correlate to the measured nanoindentation hardness (H1) of the optical material, scaling as H1−3.5. Two-dimensional (2D) finite element analysis simulations of nanoindentation showed a similar nonlinear dependence of plastic deformation with the workpiece material hardness. The findings of this study are used to determine an effective Preston coefficient for the material removal rate expression and enhance the predictive nature of the nanoplastic polishing rate for various materials utilizing their material properties.  相似文献   

16.
Silica slurry in aqueous medium for wafer polishing was prepared by sol-gel reaction of silicon alkoxide utilizing commercial silica particles as seeds that were grown stepwise through intermittent additions of tetraethylorthosilicate (TEOS) as a silica precursor. Before the growth reaction, the commercial silica particles were pre-treated in the vibratory mill partially filled with zirconia ball and the sonicator to ensure good dispersion. The alcohol left after growth reaction was removed by vacuum distillation and repeated washings with distilled water followed by centrifugations. Then, the alcohol-free silica particles were redispersed in water. The dispersion stability of the silica slurries was examined by measuring surface charge of silica particles and rheological properties. Finally, wafer-polishing performance of the prepared silica slurries was considered by measuring the polishing (or removal) rate, and RMS (root mean square) roughness of the polished wafer surface. For the polishing, MEA (monoethanolamine) and TMAH (tetramethylammonium hydroxide) were used as polishing accelerators. The polishing result showed that the removal rate was nearly independent of the concentrations of MEA and TMAH in the range of 0.3-0.5 wt% and 100-500 ppm, respectively. One of the most interesting features is that hydrothermal treatment of the prepared silica slurries in autoclave increased the removal rate as high as ten times. Although the removal rate was increased by the increased size of the abrasive particle, surface roughness of the polished wafer surface was deteriorated.  相似文献   

17.
《Ceramics International》2021,47(22):31681-31690
A functional Fe3O4/SiO2 core–shell abrasive was synthesized via hydrolysis of tetraethyl orthosilicate. A silica shell was successfully coated on a Fe3O4 core, resulting in a core-shell particle with an average diameter of 140 nm. The prepared core–shell abrasives was utilized for ultrasound-assisted magneto-rheological polishing (UAMP) of sapphire substrate. The experimental results showed that the Fe3O4/SiO2 core–shell abrasives exhibited a remarkable polishing performance for the sapphire material, resulting in smooth and detect-free surfaces with a high material removal rate (MRR) compared to mixed abrasives (Fe3O4 and SiO2) and pure Fe3O4 particles. The application of ultrasonic vibration to the sapphire wafer further improved the MRR, which was approximately 3.4 times higher than that of traditional magneto-rheological polishing. The largest MRR (1.974 μm/h) and comparatively low surface roughness (0.442 nm) of the polished sapphire wafer were achieved by UAMP with the Fe3O4/SiO2 core–shell abrasives. The polishing mechanism of the sapphire wafer is discussed in terms of chemical reactions and mechanical polishing.  相似文献   

18.
In coating and gravure printing, an impinging jet nozzle with high thermal efficiency for drying of coated film was developed.

Trial production 0f 40 kinds of nozzle enables to develop a high-performance impinging jet nozzle with heat transfer coefficient 1.5 times larger than that of current slit nozzle, through measurement of heat transfer coefficient, visualizations of air flow and heat transfer, and measuremenu of jet velocity and turbulence distribution. The purpose of the trial production was to expand a range of high heat transfer and promote turbulence compared with the current nozzle.

Paying attention to mass transfer within gravure ink coated film, drying characteristic of the film was analyzed by numerical solution of a set of equations governing the drying process in which concentration dependencies 0f the diffusion coefficient and the equilibrium vapor pressure were considered.

Applying these analyses. an industrial scale dryer with excellent drying efficiency has finally been developed.  相似文献   

19.
《Ceramics International》2023,49(5):7274-7283
The traditional aqueous-based polishing slurries have been extensively used in the ultra-precision machining process of SiC substrates, but their processing efficiency remains a major challenge in making SiC wafers with high surface quality. SiC polishing slurries based on non-aqueous solvents have been explored and reported, however, the mechanism for the accelerated SiC material removal rate (MRR) remains unknown. In this work, the Si-face and C-face of the SiC wafer were polished with water and methanol as polishing liquid carriers, respectively. The MRR of Si-face using the methanol-based slurry, can reach 260.9 nm/h, and the polished Si-face surface roughness Ra reduces to 0.150 nm. In contrast, the MRR of Si-face by using the aqueous-based slurry, is 66.8 nm/h, the polished Si-face surface roughness Ra is 0.691 nm. However, the results of MRR and Ra for C-face are opposite. The reaction between the polishing liquid carriers and the atomic structures of Si-face and C-face lead to differences of the MRRs by analyzing contact angle, XPS, and molecular dynamics (MD) simulation results. The newly revealed polishing mechanisms shined light for speeding up the development of SiC polishing slurries based on the specific aspects of the polishing surface of SiC.  相似文献   

20.
This research article describes the results of nano-silica composites filled with different epoxy contents containing nano-SiO2 particles from (5–25 wt%). Reinforcing hybrid composites enhance thermal and mechanical properties to achieve vital and sustainable products. Silica-based nanocomposites with high purity were prepared and used for the surface modification of nanosized silica particles. The surface structure's composition and physical properties of modified nano-SiO2 particles were characterized through Fourier transferred infrared spectrometer, X-ray photoelectron spectroscopy, thermogravimetric analyzer, and scanning electron microscopic. Silica-based nanocomposites were prepared by incorporating of modified nano-SiO2 as an enhancing filler. The morphology of fracture surface and dynamic mechanical properties were investigated. Results showed that the silica-based epoxy nanocomposites are bearing a long chain structure that could improve the compatibility of silica nanocomposites with epoxy resin and contribute to a better dispersion state in the matrix, which enhanced the overall performance of epoxy-cured products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号