首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
《Ceramics International》2017,43(14):10967-10974
Ca3−xSrxAl2O6(x=0, 1.07, 1.88, 1.98, 3) phosphors were prepared through solid state reaction route under different atmospheres and two kinds of oxygen-defects were identified in Ca3−xSrxAl2O6 by means of X-ray photoelectron and electron spin-resonance spectra. Their defect luminescence behavior was discussed based on photoluminescence spectra as well as the calculation of bond volume polarizability of chemical bonds. Interstitials oxygen Oi is easily formed by the lattice oxygen (O1) with increasing Sr2+ content and air atmosphere may also provide Oi(Oi=1/2O2). Besides, emission intensities of samples regularly changed by accommodating more Oi in air. By selecting proper excitation energy (276/355 nm), emission occurred from different Oi defect centers, with Spectral regions from 350 nm to 600 nm. Analysis suggested that the tunable emission characteristic at different excitation energies was linked with abnormal Oi, which was located in the interior of [AlO4] six-member rings and the capacity of accommodating Oi is related to the size of six-member rings. Based on the theoretical and experimental results, a model was proposed to explain the mechanisms related to emission tunability accordingly. This research may help elucidate emission induced by an oxygen defects system.  相似文献   

2.
《Ceramics International》2017,43(16):13089-13093
A series of CaF2:xEu3+ (x = 0.01–0.05) phosphors were synthesized by coprecipitation and high temperature solid-state method. Three different F--Eu3+ charge transfer (CT) bands in CaF2:xEu3+ (x = 0.01–0.05) were detected through the PL spectra. Three local crystal environments (deformed Oh octahedron, C3V, C4V) were proposed in Eu3+ doped CaF2. The broad peak at 277 nm is F- → Eu3+ CT peak, in which Eu3+ ions located deformed Oh octahedron sites, the broad peak at 312 nm is due to Eu3+ ions situating at C4v sites, also, Eu3+ ions with C3v sites can make the F- → Eu3+ CT produce a 38-nm redshift to 315 nm. Density functional theory (DFT) was performed to calculate the energy band gap(Eg) according to the three models. The calculation results consist with the experiment. The excitation peaks can be tuned in the same host through changing the local structure of Eu3+.  相似文献   

3.
《Ceramics International》2016,42(5):5995-5999
In this paper, a series of novel luminescent Sr1−xAl12O19:xEu2+ phosphors were synthesized by a high temperature solid-state reaction. The phase structure, photoluminescence (PL) properties, as well as the decay curves were investigated. The quenching concentration of Eu2+ in SrAl12O19 was about 0.15 (mol). Upon excitation at 378 nm, the composition-optimized Sr0.85Al12O19:0.15Eu2+ exhibited strong broad-band green emission at 530 nm with the CIE chromaticity (0.2917, 0.5736). The results indicate that Sr1−xAl12O19:xEu2+ phosphors have potential applications as green-emitting phosphors for UV-pumped white-light LEDs.  相似文献   

4.
SrAl2O4:Eu2+ phosphors with various content of Bi2O3 flux were synthesized and analyzed. It was observed that the crystallinity and the particle size of the phosphors were increased with the addition of Bi2O3 flux. These phenomena are considered to be caused via the melting of the Bi2O3 flux particles during the synthesis of the phosphors. The melted Bi2O3 flux increased the mobility and homogeneity of solid reactants, thereby enhancing the photoluminescence intensity of the phosphors. SrAl2O4:Eu2+ phosphors with Bi2O3 as the flux exhibited a broad green emission with a peak at 520 nm. The highest photoluminescence emission intensity was observed when 5 mol% Bi2O3 flux was added into the phosphors. The emission is due to 4f65d→4f7 (8S7/2) transitions of the Eu2+ ions. Moreover, Bi2O3 flux extended the application of the ultraviolet excited phosphors toward the blue-light excited phosphors. Nevertheless, the influence of Bi2O3 on the afterglow and the emission color of SrAl2O4:Eu2+ phosphors were not significant. This research indicated that Bi2O3 flux is effective flux for synthesizing SrAl2O4:Eu2+ phosphors.  相似文献   

5.
《Ceramics International》2023,49(4):5872-5883
A series of Eu3+ and Eu3+/Gd3+ co-doped barium-bismuth-borate (Ba–Bi–B) glasses were prepared by melt-quench technique. And deliberated the physical, structural, and spectroscopic properties of all glasses and explored the energy transfer process from Gd3+ to Eu3+ ions. The density of glasses increased with increasing of Gd3+ concentration in co-doped glasses. Characteristics of steady-state and time-resolved photoluminescence (PL) of Eu-doped and Eu3+-Gd3+ co-doped glasses under different excitation wavelengths suggested the prospects of the investigated glass system for display device applications. PL spectrum displays a strong red emission peak centered at 612 nm due to the Eu3+: 5D07F2 transition. Less intense emissions centered at 577 nm (7F0), 590 nm (7F1), 651 nm (7F3) and 700 nm (7F4) are also observed from the radiative transitions of the excited state 5D0 of Eu3+ions. The values of radiative parameters such as transition probability, branching ratios, and stimulated emission cross-sections were obtained from Judd–Ofelt theory analysis and indicated the aptness of the Ba–Bi–B glasses for optical devices. A 5-fold enhancement in the PL intensity was observed in 1.0 mol% Eu3+ and 3.0 mol% Gd3+ co-doped glass under λExci. = 394 nm excitation. The calculated commission Internationale de l'eclairage color coordinates and correlated color temperature values show that the Ba–Bi–B glasses are useful for red-laser and display device applications.  相似文献   

6.
One novel 3D cadmium coordination polymer, namely, {[Cd2(bptc4 )(ox2 )0.5(H2O)2] · 4.5H2O}n (1), has been hydrothermally synthesized through a reaction of 2,3′,4,5′-biphenyltetracarboxylic acid (H4bptc) with divalent cadmium salt in the presence of a second ligand (ox = oxalic acid). X-ray single crystal structure analysis reveals that tetranuclear cadmium clusters are formed by linking two Cd1 and two Cd2 ions with carboxyl groups. Each ox2  ligand, with a bidentate chelating mode, connects two Cd2 ions from two adjacent tetranuclear clusters to afford 1D zigzag cadmium cluster chains. Furthermore, 1D chains are connected by bptc4  ligands to extend a 3D framework with one-dimensional channels along the [001] direction. From a topology view, complex 1 exhibits an unprecedented 2-nodal 4, 10-connected net with the Schläfli symbol of {46}2{49. 512.622.72}. The luminescence analyses reveal that complex 1 shows an emission maximum at 437 nm, which may be attributed to the intra-ligand transition. A red shift of 31 nm compared with H4bptc ligand was observed and the luminescent decay lifetime is 2.74 ns, which indicates that it might be a potential blue light-emitting candidate. In addition, it was also characterized by elemental, IR spectra, PXRD and TG analyses.  相似文献   

7.
In this paper, the luminescence properties of Ca2ZnSi2O7:Sm3+ phosphors were improved by co-doping with M3+ (M = Bi, Al) via the sol-combustion method. The structure and luminescence properties of the Ca2ZnSi2O7:Sm3+, M3+ samples were investigated in detail, especially the luminescence enhancement effect of Bi3+/Al3+ co-doping. XRD results indicated that moderate Bi3+/Al3+ co-doping in the host structure did not change the tetragonal structure of Ca2ZnSi2O7. The series of Ca2ZnSi2O7:Sm3+, M3+ phosphors could be excited by 402 nm near-ultraviolet light and several significant emission peaks were obtained at 567, 604 and 650 nm, which originated from the electron transitions of Sm3+ from 4G5/2 to 6H5/2, 6H7/2 and 6H9/2 levels, respectively. The luminescence intensity of Ca2ZnSi2O7:Sm3+ was markedly enhanced through Bi3+/Al3+ co-doping, which could be explained by Al3+ decreasing the crystal field symmetry and greatly increasing the red luminescence intensity, and Bi3+ functioning as a sensitizer to increasing the luminescence intensity through energy transfer from Bi3+ to Sm3+ ions. In conclusion, the excellent Ca2ZnSi2O7:Sm3+, M3+ phosphors have potential application as red phosphors in white light emitting diodes.  相似文献   

8.
《Ceramics International》2017,43(18):16292-16299
Crystal structures of Sr1-xCaxLaMgSbO6:Eu3+ phosphors were studied in detail. Both the SrLaMgSbO6 and the CaLaMgSbO6 have a monoclinic (P21/n) structure. With increasing the Ca2+ concentration, the peaks gradually divided and the phase changed from SrLaMgSbO6 to CaLaMgSbO6. The symmetry of La3+ in SrLaMgSbO6 is lower than that in CaLaMgSbO6. Eu3+ ions, as the structural probes, were selected to study the structure. Lifetimes and intensity ratio were used to study the symmetry in the structure. Thermal quenching of the phosphors was discussed from 323 K to 473 K. The emission intensities of 5D17FJ and 5D07FJ damped in different ratios while increasing temperature. The configurational coordinate diagram was used to explain this interesting phenomenon.  相似文献   

9.
《Ceramics International》2016,42(13):14956-14962
SrxCa1−xAlSiN3: Eu2+ phosphors were prepared by using the high temperature solid state reaction in a 1.1 Mpa N2 atmosphere. The phase structures, photoluminescence (PL) properties, and chromaticity properties of the phosphors affected by Sr/Ca Substitution have been investigated in detail. With increasing Sr content (x value), the crystal grain became bigger and the average grain size increased from 5 µm to 10 µm. PL emission bands of SrxCa1−xAlSiN3: Eu2+ showed a blue-shift from 660 (x=0) to 617 nm (x=0.8), the shoulder of the excitation spectra around 550 nm showed a slightly blue-shift and decay lifetime shortened from 776.96 (x=0.2) to 642.35 ns (x=0.8). Both the emission and excitation intensity of peak position increased with Sr content increased. The ideal white light with high CRI (Ra>88) can be obtained by mixing the SrxCa1−xAlSiN3: Eu2+ phosphors and commercial green phosphors with appropriate proportion of the components.  相似文献   

10.
A series of Er3+/Yb3+ co-doped Cs3GdGe3O9 (CGG) phosphors were prepared by solid-phase sintering method, and the microstructure and upconversion luminescence (UCL) properties were tested by variable-temperature X-ray diffractometry and variable-temperature spectrometer. Abnormal UCL phenomena were found, which include UCL intensity continuously increasing under 980 nm laser continuous irradiation and UCL thermal enhancement. After 10 min of continuous irradiation by 980 nm laser at 513 K, the UCL intensity increased 2.91 times compared with the initial UCL intensity. The phenomenon is due to the electron releasing of host defects. The green UCL intensity of CGG:0.1Er3+/0.2Yb3+ decreases at 303–423 K and increases at 423–723 K, which reaches 13.23 times compared with that at 423 K. The phenomenon is due to Er3+–Yb3+ distance change by temperature and phonon-assisted transitions. In addition, the absolute temperature sensitivities of samples are calculated by luminescence intensity ratio technology, the maximum absolute sensitivity of CGG:0.1Er3+/0.4Yb3+ is 0.00691 K−1 at 546 K, and the maximum relative sensitivity of CGG:0.1Er3+/0.1Yb3+ is 0.01224 K−1 at 303 K. These results indicate that CGG:Er3+/Yb3+ phosphors can be used as a high-temperature optical thermometer.  相似文献   

11.
《Ceramics International》2017,43(13):10166-10173
Uniform spheres of (Gd1−xDyx)2O3 (x=0.01–0.10) have been converted from their colloidal precursor spheres synthesized via homogeneous precipitation. The synthesis, particle size control, luminescent properties and energy transfer of the (Gd1-xDyx)2O3 were systematically studied by the combined techniques of fourier transform infrared (FT-IR) spectroscopy, x-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence excitation/ photoluminescence (PLE/PL) spectroscopy, and fluorescence decay analysis. The precursor exhibit mono-dispersed spherical morphology and its size can be efficiently controlled by adjusting the urea content. The phase pure (Gd1−xDyx)2O3 oxides can be obtained by calcining precursor at 600 °C, and the spherical morphology remained at even high temperature of 1000 °C. The (Gd1−xDyx)2O3 phosphors display strong yellow emission at 575 nm (4F9/26H13/2 transition of Dy3+) and weak blue emission at 486 nm (4F9/26H15/2 transition of Dy3+) upon ultraviolet (UV) excitation of Gd3+ at 275 nm (8S7/26IJ transition of Gd3+). The optimal content of Dy3+ was found to be ~2 at% (x=0.02) due to the concentration quenching. Owing to the efficient Gd3+→Dy3+energy transfer, the fluorescent property of the phosphor was significantly improved. The emission intensity of (Gd1−xDyx)2O3 increased with calcination temperature and particle size increasing, while the lifetime for the 575 nm emission gradually decreased. The (Gd1−xDyx)2O3 spheres developed in the present work is expected to be a promising yellow phosphor widely used in the lighting and display areas.  相似文献   

12.
Hexagonal La2O3 and monoclinic Eu2O3 ceramics were prepared, and their microwave dielectric properties were investigated. La2O3 sintered at 1400 °C exhibited promising microwave dielectric properties of εr = 18.6, Q×f = 71,400 GHz, and a negative τf of − 35.1 ppm/°C, while Eu2O3 sintered at 1500 °C possessed relative lower εr and Q×f values of 17.9 and 35,000 GHz, respectively, with an abnormally positive τf of + 19.6 ppm/°C. The difference in their microwave dielectric properties is mainly due to lattice-induced strain, which can be characterized by bond valence. To investigate the degradation of RE2O3 (RE = La, Eu) ceramics in air, a series of La2−xEuxO3 (x = 0.5, 1, and 1.5) ceramics were prepared. The results of the present study suggest that the introduction of Eu3+ effectively prevents the decomposition of La2O3.  相似文献   

13.
BaAl2?2xNi2xSi2O8?x (x = 0, 0.005, 0.01, 0.02, 0.03) ceramics were prepared using traditional solid phase reaction method. The microwave dielectric properties, including permittivity (εr), quality factor (Q × f), and temperature coefficient of resonant frequency (τf), were discussed based on the bond valence theory. The first-principle calculation was adopted to determine the site (Ba, Al, and Si) where doping element (Ni2+) would be inclined to occupy. The substitution of Ni2+ for Al3+ contributed to the breaking of Al-O and Si-O bonds and then facilitated the BaAl2Si2O8 (BAS) hexacelsian-celsian transformation. Moreover, this substitution could change the bond strength between cation and oxygen anion due to the variation of the bond valence, which reasonably explained the variation of εr, Q × f, and τf values. Well-sintered and completely transformed celsian ceramics can be obtained after doping with Ni2+. When x = 0.01, compact BaAl1.98Ni0.02Si2O7.99 ceramic exhibited highly promising microwave dielectric properties: εr = 6.89, Q × f = 53, 287 GHz and τf = -25.31 × 10?6 /°C.  相似文献   

14.
The incorporation of therapeutic ions like Sr2+, Si4+, Zn2+ and Li+ into biomaterials has become a promising approach to promote bone regeneration. However, the effects of Sr2+ and Zn2+ co-substitution on the crystal structure and properties of β-tricalcium phosphate (β-TCP) have not been elucidated well. In this study, Sr2+/Zn2+ co-substituted β-tricalcium phosphate (SrZnTCP) nano-powders with different extents of substitution (0–4.8 mol%) were synthesized by poly(ethylene glycol)-assisted co-precipitation and subsequent heat treatment. The as-synthesized SrZnTCP nano-powders were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, elemental analysis, Rietveld refinement and differential scanning calorimetry. The results showed that the conversion of calcium-deficient apatite to β-TCP was achieved after heat-treatment above 800 °C. The a-axis and c-axis lattice parameters gradually decreased with increasing level of Sr2+/Zn2+ co-substitution in β-TCP lattice. Sr2+ and Zn2+ preferentially occupied the ninefold coordinated Ca (4) sites and the sixfold coordinated Ca (5) sites, respectively. The co-substitution of Sr2+ and Zn2+ for Ca2+ significantly improved the thermal stability of β-TCP. The release rate of Zn2+ from SrZnTCP depended on Ca2+ concentration over 63-day immersion in PBS solution while that of Sr2+ was not affected by Ca2+ concentration. The amount of Sr2+ released increased with increasing Sr2+ content in SrZnTCP. Collectively, SrZnTCP showed great promise as a Sr2+/Zn2+-releasing biomaterial for bone repair, although no obvious mineralization was observed on β-TCP and SrZnTCP disc samples during 56 days of immersion in simulated body fluid.  相似文献   

15.
A novel metal-organic framework, [Co63-OH)4(ndc)4(bip)2(H2O)2]n (1)[H2 ndc = 1,4-naphthalenedicarboxylic acid, bip = 1,5-bis(imidazole-1-yl)pentane], constructed from unique [Co63-OH)4]8 +n chains containing alternate [Co4(OH)2]6 + and [Co2(OH)2]2 + subunits, was reported, which has a new (3,3,8,12)-connected or 12-connented fcu/cubic network and shows weak antiferromagnetic interaction between the adjacent Co(II) ions mediated through the carboxylate and hydroxyl groups.  相似文献   

16.
《Ceramics International》2016,42(5):5677-5685
The rare-earth ions (Eu3+, Dy3+) doped Y6WO12 phosphors were prepared by a citrate-based sol–gel method. The morphologies and structural properties of the as-prepared and doped samples were analyzed by scanning electron microscope images and X-ray diffraction patterns. The luminescent properties were studied by examining the excitation and emission spectra of the samples. The Eu3+ and Dy3+ ions doped samples exhibited their characteristic emission bands in the visible region under ultraviolet light excitation. The temperature-dependent photoluminescence (PL) properties of the samples were also investigated. The PL spectra of the synthesized samples by the sol–gel method were compared with those of the bulk sample prepared by a solid-state reaction. Similarly, the Commission International de I’Eclairage chromaticity coordinates and the decay times of Y6WO12:Eu3+ (3 mol%) and Y6WO12:Dy3+ (2 mol%) phosphors were studied.  相似文献   

17.
《Ceramics International》2022,48(16):22943-22952
In this study, we fabricated and characterized six new nanopowders representing variations of La2O3–Fe2O3–Bi2O3, i.e., 100Bi2O3, 30Fe2O3–70Bi2O3, 3La2O3–27Fe2O3–70Bi2O3, 7La2O3–23Fe2O3–70Bi2O3, 10La2O3–20Fe2O3–70Bi2O3, and 20La2O3–10Fe2O3–70Bi2O3 (represented by 100B, 30F70B, 3L27F70B, 10L20F70B, and 20L10F70B, respectively). These nanopowders were prepared by the microwave-assisted hydrothermal synthesis method. Saponin extract from soapnuts was used as the nanoparticle capping agent. The structural, optical, and gamma radiation characteristics were measured, calculated, and analysed, respectively. The chemical structures of the nanocomposites influenced their optical and radiation shielding characteristics. The optical bandgaps of the 100B, 30F70B, 3L27F70B, 7L23F70B, 10L20F70B, and 20L10F70B nanopowders were 3.16, 3.13, 3.43, 3.45, 3.46, and 3.58 eV, respectively. The ranges of the mass attenuation coefficients of the nanopowders were computed, using XCOM, to be 0.0412–5.1624, 0.0401–4.5406, 0.0401–4.5285, 0.0401–4.5129, 0.0401–0.5015, and 0.0400–4.4156 cm2/g, respectively, and the ranges of mass energy absorption coefficients were found to be 0.0232–1.7525, 0.0228–1.5484, 0.0228–1.5598, 0.0288–1.5746, 0.0228–1.5853, and 0.0227–1.6192 cm2/g, respectively, for photon energies in the range of 0.1–10 MeV. The order of the dose rate trend was as follows: 30F70B < L27F70B < 7L23F70B < 10L20F70B < 20L10F70B. Analysis of the photon interaction parameters showed that the synthesized nanopowders could function well as fillers in radiation-shielding matrices.  相似文献   

18.
With high-temperature solid-state reaction method, a series of Lu2Sr(1−x)Al4SiO12:xEu2+ phosphors have been synthesized. With Rietveld refinement method, the crystal structure of Lu2SrAl4SiO12 has been refined. Under the excitation of the ultraviolet and violet band light, Lu2Sr(1−x)Al4SiO12:xEu2+ emits the Eu2+ characteristic blue broadband light. The photoluminescence properties of concentration quenching, emission peak shift, reflectance spectra, and luminescence decay have been investigated. With the structure analyses, the corresponding physical mechanisms have been discussed. With the increased temperature, this phosphor shows well thermal stabilities. For the xEu = 0.06, 0.08, and 0.1 phosphors, the strong anti-thermal quenching performance has been observed. The reason for the anti-thermal quenching of this phosphor has been discussed. The trap capture mechanism may be the suitable physical mechanism to explain the anti-thermal quenching of this phosphor. This phosphor shows the potential applications in the white LED lighting fields.  相似文献   

19.
Classic transparent ceramics for laser gain medium and window materials may benefit from their distinctive features of structural homogeneity and high transparency at large scales. However, this has restricted the ability of the ceramics for local light management. Herein, a strategy for ceramic-phosphor design was conducted in the present work via introducing light-scattering centers into single phased YAG: Ce3+ transparent ceramics, and an enhancement of light extraction was experimentally realized through the control of Al2O3 grain size. UV–vis-NIR diffuse reflectance spectra further confirmed the important roles of the excrescent Al2O3 grains. More importantly, PL characterization shows orange-white light emission with high brightness at high temperature. The results highlight that the unique configuration enables simultaneous control of light propagation, luminous efficiency and thermal stability of luminescence, and the design strategy may create great opportunities for laser lighting and displays with high laser power density.  相似文献   

20.
One cadmium coordination polymer with 2-Fold parallel Interpenetration Structure and Helical Chains based on biphenyl-4-hydroxyl-3,3′-bicarboxylic acid (H2L) and μ-4,4′-bipyridine (bpy) {[Cd(L) (bpy)1/2(H2O)]2}n (1), has been obtained by hydrothermal synthesis and characterized by elemental analysis, powder X-ray diffraction (PXRD), IR spectra, thermal gravimetric analyses (TGA) and also by single-crystal X-ray diffraction. It crystallizes in the monoclinic, space group P21/c. The L2  anions of complex 1, as a bridging ligand, connect Cd(II) ions to form two-dimensional (Cd2(L)2)n layer in which the 1D (Cd–L)n helical chains are alternately arranged in a right- and left-handed sequence. These layers are further linked to build a three-dimensional network by the bpy ligands. In addition, the photochemical property of compound 1 has also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号