首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous Si3N4–SiC composite ceramic was fabricated by infiltrating SiC coating with nano-scale crystals into porous β-Si3N4 ceramic via chemical vapor infiltration (CVI). Silica (SiO2) film was formed on the surface of rod-like Si3N4–SiC grains during oxidation at 1100 °C in air. The as-received Si3N4–SiC/SiO2 composite ceramic attains a multi-shell microstructure, and exhibits reduced impedance mismatch, leading to excellent electromagnetic (EM) absorbing properties. The Si3N4–SiC/SiO2 fabricated by oxidation of Si3N4–SiC for 10 h in air can achieve a reflection loss of ?30 dB (>99.9% absorption) at 8.7 GHz when the sample thickness is 3.8 mm. When the sample thickness is 3.5 mm, reflection loss of Si3N4–SiC/SiO2 is lower than ?10 dB (>90% absorption) in the frequency range 8.3–12.4 GHz, the effective absorption bandwidth is 4.1 GHz.  相似文献   

2.
Cf/SiC composites and Si3N4 ceramics are candidate materials for applications in thermal protection system. This paper investigated the joining of Cf/SiC and Si3N4 using Y2O3–Al2O3–SiO2 glass. The reliability of joints was evaluated by thermal shock tests. In this present work, the typical joint structure was Cf/SiC-glass-Si3N4. The results demonstrate that Direct bonding has been identified as the interfacial bonding mechanism at the SiC/glass and glass/Si3N4 interfaces. The maximum shear strength of the Cf/SiC–Si3N4 joint was ~34 MPa, which delivered an effective method to achieve strong, reliable bonding between the dissimilar materials. In addition, after thermal shock for 10 cycles, the residual strength remained ~13 MPa. Bubbles instead of microcracks formed in the glass filler, which was the main factor causing the degradation of the joint performance. It is suggested that improving the high temperature resistance of joining materials is the key to realize the application of this joint structure.  相似文献   

3.
《Ceramics International》2022,48(17):24803-24810
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) have been widely used as structural-functional materials at high temperatures. However, their mechanical and electromagnetic wave (EMW) absorbing properties will deteriorate due to high-temperature oxidation. Therefore, unique sandwich structure, consisting of inner Si3N4 impedance layer, middle porous SiOC loss layer and dense oxidation-resistant Si3N4 layer, was proposed to enhance multiple material properties in oxidation environment. Herein, SiCf/Si3N4–SiOC–Si3N4 composites was fabricated by alternating chemical vapor infiltration (CVI) and polymer infiltration pyrolysis (PIP) methods. For these composites, SiC fiber is used as both reinforcing phase and electromagnetic (EM) absorber. CVI Si3N4 matrix was distributed in inner and outer layer of the SiCf/Si3N4–SiOC–Si3N4 composites. While inner Si3N4 layer between BN interphase and SiOC matrix forms nano-heterogeneous interphase to consume EM energy and enhance mechanical properties of composites, outer dense and oxidation-resistant CVI Si3N4 coating serves to maintain properties. PIP SiOC matrix exhibits porous structure that can effectively deflect cracks and achieve multiple scattering of EMW. SiCf/Si3N4–SiOC–Si3N4 composites with sandwich structure demonstrated excellent EMW absorbing properties and mechanical performance in high-temperature oxidation environments.  相似文献   

4.
Cobalt ferrite has problems such as poor impedance matching and high density, which results in unsatisfactory electromagnetic wave (EMW) absorption performance. In this study, the CoFe2O4@C core-shell structure composite was synthesized by a two-step hydrothermal method. X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and vector network analysis et al. were used to test the structure and EMW absorption properties of CoFe2O4@C composite. The results show that the reflection loss (RL) of the CoFe2O4@C composite reaches the maximum value of -25.66 dB at 13.92 GHz, and the effective absorbing band (EAB) is 4.59 GHz (11.20-15.79 GHz) when the carbon mass content is 6.01%. The RL and EAB of CoFe2O4@C composite are increased by 219.55% and 4.59 GHz respectively, and the density is decreased by 20.78% compared with the cobalt ferrite. Such enhanced EMW absorption properties of CoFe2O4@C composite are attributed to the attenuation caused by the strong natural resonance of the cobalt ferrite, moreover, the carbon coating layer adjusts the impedance matching of the composite, and the introduced dipole polarization and interface polarization can cause multiple Debye relaxation processes.  相似文献   

5.
《Ceramics International》2021,47(19):27058-27070
The porous SiC–Si3N4 composite ceramics with good EMW absorption properties were prepared by combination of gelcasting and carbothermal reduction. The pre-oxidation of Si3N4 powders significantly improved the rheological properties of slurries (0.06 Pa s at 103.92 s−1) and also suppressed the generation of NH3 and N2 from Si3N4 hydrolysis and reaction between Si3N4 and initiator APS, thereby reducing the pore defects in green bodies and enhancing mechanical properties with a maximum value of 42.88 MPa. With the extension of oxidation time from 0 h to 10 h, the porosity and pore size of porous SiC–Si3N4 composite ceramics increased from approximately 41.86% and 1.0–1.5 μm to 46.33% and ~200 μm due to the production of CO, N2 and gaseous SiO, while the sintering shrinkage decreased from 16.24% to 10.50%. With oxidation time of 2 h, the Si2N2O fibers formed in situ by the reaction of Si3N4 and amorphous SiO2 effectively enhanced the mechanical properties, achieving the highest flexural strength of 129.37 MPa and fracture toughness of 4.25 MPa m1/2. Compared with monolithic Si3N4 ceramics, the electrical conductivity, relative permittivity and dielectric loss were significantly improved by the in-situ introduced PyC from the pyrolysis of three-dimensional network DMAA-MBAM gel in green bodies and the SiC from the carbothermal reduction reaction between PyC and SiO2 and Si3N4. The porous SiC–Si3N4 composite ceramics prepared by the unoxidized Si3N4 powders demonstrated the optimal EMW absorption properties with reflection loss of −22.35 dB at 8.37 GHz and 2 mm thickness, corresponding to the effective bandwidth of 8.20–9.29 GHz, displaying great application potential in EMW absorption fields.  相似文献   

6.
Porous SiO2/3Al2O3·2SiO2 ceramics decorated with carbon nanowires (CNWs) were manufactured by catalytic chemical vapor deposition (CCVD) for wide absorption band and high absorption application. The results show that the as-prepared CNWs grow uniformly in porous SiO2/3Al2O3·2SiO2 ceramics to form the three dimensional(3D) structure. The content of CNWs can be effectively controlled by changing the weight of catalyst, and the dielectric properties of CNWs-SiO2/3Al2O3·2SiO2 composite ceramics can be tuned. As expected, the CNWs-SiO2/3Al2O3·2SiO2 composite ceramics possess wonderful electromagnetic (EM) absorption properties due to the effects of conductive loss, impedance match and dipoles polarization. It can be concluded that the minimum reflection coefficient (RCmin) of CNWs-SiO2/3Al2O3·2SiO2 composite ceramics reaches ?31?dB?at 9.1?GHz (which means 99.9% of EM wave powers are absorbed) and the effective absorption bandwidth (EAB) covers the whole X-band (8.2–12.4?GHz) at the thickness of 5.0?mm.  相似文献   

7.
Silicon-nitride (Si3N4) components were joined under vacuum at 1100 °C for 10 min using Si–Mg composite fillers with Mg contents (XMg) that ranged from 0 at.% to 59 at.%. The Si3N4/Si3N4 joints were fabricated via Si layer formation at the joint interface; the molten Si–Mg liquid was transformed into a solid Si layer after Mg-evaporation-induced isothermal solidification. The joint tensile strength at room temperature increased considerably when XMg exceeded the liquidus composition of 37 at.% because of the enhanced densification/thinning of the Si layer. In these cases, some Mg atoms reacted with Si3N4 to form a fine-grained MgSiN2-based layer, whereas relatively large (>0.1 μm) and smaller MgO precipitates (<10 nm) were observed in the Si layer. At a high XMg, the MgO precipitates were arranged in a network-like structure, which improved the fracture strength of the Si layer. The joints with a high strength at room temperature were examined using a three-point bending test at 1200 °C in air and endured a maximum fracture stress of ~200 MPa, which confirmed their potential for use in oxidizing atmospheres at least 100 °C above the bonding temperature.  相似文献   

8.
Porous silicon nitride (Si3N4) ceramics incorporated with hexagonal boron nitride (h-BN) and silica (SiO2) nanoparticles were fabricated by pressureless-sintering at relatively low temperature, in which stearic acid was used as pore-making agent. Bending strength at room and high temperatures, thermal shock resistance, fracture toughness, elastic modulus, porosity and microstructure were investigated in detail. The mechanical properties and thermal shock resistance behavior of porous Si3N4 ceramics were greatly influenced by incorporation of BN and SiO2 nanoparticles. Porous BN–SiO2–Si3N4 composites were successfully obtained with good critical thermal shock temperature of 800 °C, high bending strength (130 MPa at room temperature and 60 MPa at 1000 °C) and high porosity.  相似文献   

9.
《Ceramics International》2020,46(14):22474-22481
To realize the broad-bandwidth and high-efficiency absorption characteristics, a novel SiC nanowires reinforced SiO2/3Al2O3·2SiO2 porous ceramic was successfully fabricated by method of precursor infiltration pyrolysis (PIP). Polycarbosilane (PCS) and ferrocene (Fe(C5H5)2) were used as the precursor and catalyst to incorporate SiC nanowires into the SiO2/3Al2O3·2SiO2 porous ceramic. The curvy SiC nanowires formed three-dimensional (3D) networks with a proper nanometer heterostructure, thereby consuming the microwave energies. The influence of SiC nanowires contents on the microwave absorption properties was investigated. The results indicate that the SiC nanowires contents can be tuned by controlling the PIP cycles, thereby modifying the dielectric properties of as-prepared composite ceramics. The dielectric and electromagnetic wave absorption performances are gradually enhanced with an increasing of SiC nanowires contents. The SiC nanowires reinforced SiO2/3Al2O3·2SiO2 composite ceramic exhibits excellent electromagnetic wave absorption abilities when the SiC nanowires content is 23.9% (PIP5). The minimum reflection coefficient (RCmin) of the composite ceramic is −30 dB at 10.0 GHz, corresponding to more than 99.9% of the electromagnetic wave consumption. The effective absorption bandwidth (EAB) can cover the frequency ranges of 8.2–12.4 GHz (the entire X-band) at the thickness of 5.0 mm. In general, the novel SiC nanowires reinforced SiO2/3Al2O3·2SiO2 composite ceramic can be considered as a promising electromagnetic wave absorbing material.  相似文献   

10.
Using CaO, Y2O3, Al2O3, and SiO2 micron-powders as raw materials, CaO–Y2O3–Al2O3–SiO2 (CYAS) glass was prepared using water cooling method. The coefficient of thermal expansion (CTE) of CYAS glass was found to be 4.3 × 10?6/K, which was similar to that of SiCf/SiC composites. The glass transition temperature of CYAS glass was determined to be 723.1 °C. With the increase of temperature, CYAS glass powder exhibited crystallization and sintering behaviors. Below 1300 °C, yttrium disilicate, mullite and cristobalite crystals gradually precipitated out. However, above 1300 °C, the crystals started diminishing, eventually disappearing after heat treatment at 1400 °C. CYAS glass powder was used to join SiCf/SiC composites. The results showed that the joint gradually densified as brazing temperature increased, while the phase in the interlayer was consistent with that of glass powder heated at the same temperature. The holding time had little effect on phase composition of the joint, while longer holding time was more beneficial to the elimination of residual bubbles in the interlayer and promoted the infiltration of glass solder into SiCf/SiC composites. The joint brazed at 1400 °C/30 min was dense and defect-free with the highest shear strength of about 57.1 MPa.  相似文献   

11.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   

12.
13.
The influence of various rare-earth oxide additives and the addition of SiC nanoparticles on the thermal shock resistance of the Si3N4 based materials was investigated. The location of SiC particles inside the Si3N4 grains contributed to a higher level of residual stresses, which caused a failure at the lower temperature difference compared to the composites with a preferential location of the SiC at the grain boundaries. A critical temperature difference increased with an increasing ionic radius of RE3+ for both the composites and the monoliths. The critical temperature difference for the composite (580 °C) and the monolith (680 °C) sintered with La2O3 was significantly higher compared to the composite and the monolith doped with Lu2O3 (430 °C). A good agreement was found between the results of the critical temperature difference estimated by the indentation quench test and that obtained by the strength retention method.  相似文献   

14.
“Crack-free” alumina-silicon nitride joints, comprised of 15 layers of gradually differing compositions of Al2O3/Si3N4, have been fabricated using sialon polytypoids as functionally graded materials (FGM) bonding layers for high-temperature applications. Using flexural strength tests conducted both at room and at elevated temperatures, the average fracture strength at room temperature was found to be 437 MPa; significantly, this value was unchanged at temperatures up to 1000 °C. Scanning electron microscopy (SEM) observations of fracture surfaces indicated the absence of any glassy phase at the triple points. This result was quite contrary to the previously reported 20-layer Al2O3/Si3N4 FGM samples where three-point bend testing revealed a severe strength degradation at high temperatures. Consequently, we believe that the joining of alumina to silicon nitride using polytypoidally functional gradients can markedly improve the suitability of these joints for high-temperature applications.  相似文献   

15.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   

16.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   

17.
《Ceramics International》2023,49(5):7236-7244
A method for preparation of dense Y2O3–MgO composite ceramics by the microwave sintering was developed. The initial powders were obtained by glycine-nitrate self-propagating high-temperature synthesis (SHS) with different oxidant-to-fuel ratio. Density and IR-transmission of microwave sintered Y2O3–MgO ceramics increase with respect to dispersity of the SHS-powders and reach its maximum values for the powder prepared in a 20% fuel excess. The sintering behavior of Y2O3–MgO compacts was investigated by optical dilatometry and measuring an electric conductivity upon heating. Significant microwave radiation power surges at temperatures of 900–1000 °C, caused by the decomposition of magnesium carbonate, have been found. As a result of matching the conditions for the synthesis of powders and sintering modes, a transmission of composite ceramics of 78% at a wavelength of 6 μm was achieved at a maximum processing temperature of 1500 °C.  相似文献   

18.
《Ceramics International》2022,48(12):16744-16753
Manganese dioxide (MnO2) has been widely utilized in the electromagnetic wave (EMW) absorption field because it exhibits numerous crystal types including α-MnO2, β-MnO2, γ-MnO2, and δ-MnO2, and is environmentally friendly. To enhance the EMW absorption performance of this material, we combined the precipitation method and calcination process to obtain γ-MnO2 microspheres, and developed a core-shell structure of γ-MnO2@SiO2 and γ-MnO2@SiO2@TiO2 microspheres via the sol-gel process. Based on the synergistic effects between the core-shell structure and dielectric loss, γ-MnO2@SiO2 with a thickness of 2.85 mm achieved the minimum reflection loss of ?60.2 dB, demonstrating that these microspheres are excellent candidates for EMW absorbers.  相似文献   

19.
《Ceramics International》2016,42(10):11554-11561
Post-reaction sintering of a powder compact of Si and sintering aids is a useful technique for fabricating silicon nitride (Si3N4) ceramics at low costs. In order to inhibit the inhomogeneous and uncontrollable exothermic nitridation of Si in the powder compact, Si–Y2O3–Al2O3 nanocomposite particles are designed as an aid for post-reaction sintering. These Si–Y2O3–Al2O3 nanocomposite particles are prepared via mechanical treatment applying high shear stress. Scanning electron microscopy (SEM) observations show that Y2O3 and Al2O3 particles are homogenously dispersed, and fixed to the Si particles. A green compact prepared using the Si–Y2O3–Al2O3 nanocomposite particles results in lower electrical resistivity than that prepared using a powder mixed by wet ball-milling, which suggests that Si particles in the green compact prepared using the nanocomposite particles are isolated by Y2O3 and Al2O3 particles. The isolation of Si particles by the sintering aids successfully prevents the Si particles from melting and agglomerating during the nitridation process, resulting in a higher nitridation ratio and higher α-Si3N4 phase content due to the inhibition of rapid heat transfer caused by the exothermic reaction. The nitridation ratio also increases with the applied power during mechanical treatment. As a result of firing the homogeneously nitrided powder compacts at high temperatures, Si3N4 ceramics with homogeneous microstructure and improved density are successfully fabricated in this manner.  相似文献   

20.
Si3N4–SiCN composite ceramics were successfully fabricated through precursor infiltration pyrolysis (PIP) method using polysilazane as precursor and porous Si3N4 as preform. After annealed at temperatures varying from 900 °C to 1400 °C, the phase composition of SiCN ceramics, electrical conductivity and dielectric properties of Si3N4–SiCN composite ceramics over the frequency range of 8.2–12.4 GHz (X-band) were investigated. With the increase of annealing temperature, the content of amorphous SiCN decreases and that of N-doped SiC nano-crystals increases, which leads to the increase of electrical conductivity. After annealed at 1400 °C, the average real and imaginary permittivities of Si3N4–SiCN composite ceramics are increased from 3.7 and 4.68 × 10?3 to 8.9 and 1.8, respectively. The permittivities of Si3N4–SiCN composite ceramics show a typical ternary polarization relaxation, which are ascribed to the electric dipole and grain boundary relaxation of N-doped SiC nano-crystals, and dielectric polarization relaxation of the in situ formed graphite. The Si3N4–SiCN composite ceramics exhibit a promising prospect as microwave absorbing materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号