首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermochemical interactions between Ca2Y8(SiO4)6O2 apatite, a potential environmental barrier coating (EBC) material, and a synthetic CMAS having the composition 23.3 CaO - 6.4 MgO - 3.1 Al2O3 - 62.5 SiO2 - 4.1 Na2O - 0.5 K2O - 0.04 Fe2O3 mole % were investigated. Pellets of apatite + CMAS powder and hot-pressed apatite disc-CMAS couples were annealed at 1200–1500 °C for 1–50 hours in air. Powder X-ray diffraction (XRD) was used to identify the phases present. Polished cross-sections of the heat treated pellets and diffusion couples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high angle annular dark field (HAADF) imaging, selected area electron diffraction (SAED), and energy dispersive X-ray spectroscopy (EDS). Ca3Y2(Si3O9)2 cyclosilicate, apatite, and amorphous phases were present in the samples heat treated at 1200 and 1300 °C, whereas no cyclosilicate was detected in samples annealed at 1400 and 1500 °C. A distinct cyclosilicate layer was observed at the apatite-CMAS interface in the diffusion couples heat treated at 1200 and 1300 °C. However, at 1400 and 1500 °C, due to its much lower viscosity, CMAS quickly infiltrated the apatite substrate through pores and along the grain boundaries and no cyclosilicate was observed; the apatite grains dissolved in molten CMAS followed by re-precipitation of apatite needles within an amorphous phase on cooling.  相似文献   

2.
To improve the ability of rare-earth (RE) silicates to resist molten calcium–magnesium–aluminosilicate (CMAS) at high temperature, a novel high-entropy (4RE0.25)2Si2O7/(4RE0.25)2SiO5 (RE = Y, Yb, Er, and Sc) multiphase ceramic was prepared by a two-step process. During sintering, (4RE0.25)2SiO5 can react with SiO2 at the grain boundaries of (4RE0.25)2Si2O7, which can not only purify the grain boundary but also promote the growth of the original (4RE0.25)2Si2O7 grains, thereby significantly improving the ability to resist molten CMAS corrosion at high temperature. After corroding at 1500°C for 48 h, the reaction layer of the multiphase ceramic was only 55 μm thick. Our results confirm that the high-entropy RE silicate multiphase ceramics represent an effective way to improve the ability to resist molten CMAS corrosion at high temperature.  相似文献   

3.
《Ceramics International》2023,49(18):29948-29961
High temperature corrosion behavior of Ca2Gd8(SiO4)6O2 (CGdS) apatite has been investigated in the presence of molten calcium-magnesium-aluminosilicate (CMAS) glass having the composition 21.9 CaO - 4.3 MgO - 5.4 Al2O3 - 63.0 SiO2 - 4.3 Na2O - 0.8K2O - 0.1 Fe2O3 (weight %). CGdS apatite powder was prepared by solid state synthesis from constituent oxides. Pellets of CGdS apatite + CMAS mixed powder and CGdS-CMAS diffusion couples were annealed at 1200, 1300, 1400, and 1500 °C for 1 and 20 h in ambient atmosphere. Development of phases in heat treated specimens was characterized using various analytical techniques as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high angle annular dark field imaging, selected area electron diffraction and energy dispersive X-ray spectroscopy. In both pellets and diffusion couples, monoclinic cyclosilicate Ca3Gd2(Si3O9)2 formed from reaction of apatite with CaO in the CMAS melt only in samples heat treated at 1200 °C for 1 and 20 h or at 1300 °C for 1 h. Triclinic CaSiO3 and monoclinic diopside MgCaSi2O6 were also observed in samples annealed at 1200 and 1300 °C. At 1400 and 1500 °C, because of its low viscosity, CMAS infiltrated along the pores and grain boundaries of the apatite substrates in diffusion couples. Phase compositions predicted from thermochemical computation were in good agreement with those observed experimentally. Ca2Gd8(SiO4)6O2 apatite has the potential for being an effective T/EBC in circumventing the penetration of molten CMAS up to about 1300 °C but not at higher temperatures.  相似文献   

4.
HfSiO4 is considered as a candidate for environmental barrier coating (EBC), but there is a lack of comprehensive evaluation of its resistance against corrosive medium. We herein study the behavior of HfSiO4 against CMAS melt and high-velocity water vapor. HfSiO4 shows poor resistance to CMAS attack. Si diffusion occurs during CMAS attack, which leads to the formation of HfO2 and CaSi2O5. HfSiO4 decomposes to form SiO2 and HfO2 under the scouring of water vapor, in which SiO2 forms volatile hydroxide and is taken away by high-velocity steam. HfSiO4 is not the preferred system for surface layer of EBC system and is expected to be used as intermediate transition layer.  相似文献   

5.
Meeting service requirements at temperatures above 1400°C is challenging for the CMAS corrosion resistance of single-component pyrosilicates. This research presents a high-entropy design approach for pyrosilicates using ionic radius modulation. This method enhances pyrosilicates’ resistance to CMAS corrosion by regulating the apatite's quantity formed to obstruct CMAS melt infiltration while avoiding excessive reactions. We investigated the corrosion behavior of two types of single-component pyrosilicates (Lu2Si2O7 and Yb2Si2O7) with a small ionic radius of rare-earth elements (REEs), three types of β-type pyrosilicates ((Ho1/4Er1/4Yb1/4Lu1/4)2Si2O7, (Y1/5Ho1/5Er1/5Yb1/5Lu1/5)2Si2O7 and (Y1/6Ho1/6Er1/6Tm1/6Yb1/6Lu1/6)2Si2O7), and one γ-type pyrosilicate ((Gd1/4Dy1/4Yb1/4Lu1/4)2Si2O7) with a larger average ionic radius of REEs at 1450–1550°C. The analysis of the residual CMAS and apatite compositions showed the differences in the behavior of different REEs in the reaction with CMAS and the conditions required for the reaction to proceed.  相似文献   

6.
The degradation of ytterbium aluminum garnet (YbAG) exposed to molten Ca–Mg–Fe–Al–Si–O (CMAS) at 1673 K was investigated for two kinds of dense polycrystalline YbAG with compositions deviating slightly from stoichiometry, referred to as Al- and Yb-rich. The mitigation of the CMAS attack for Yb-rich YbAG was markedly superior to that for the Al-rich one. For both types of YbAG, corrosion progressed due to the preferential penetration of the CMAS melt along grain boundaries in the thickness direction and the simultaneous dissolution of crystal grains into the melt. The lower of the corroded region consisted of YbAG crystals with a core/shell-I/shell-II structure. Shell-I contained alkaline earth, silicon, and iron cations, whereas these cations were hardly detected in shell-II. Growth of the shell-I region was considered to progress by dissolution and reprecipitation through the melt existing around it, and finally, the melt disappeared, resulting in the formation of a thin shell-II region containing little of these ions. The formation and growth of the shell-I region were found to be promoted by making the YbAG Yb-rich, resulting in enhancement of the resistance to CMAS.  相似文献   

7.
Improvement of the calcium-magnesium aluminosilicate (CMAS) infiltration mitigation concept in thermal barrier coatings (TBC) requires fundamental data on thermochemical reaction involving rare-earth oxide candidate as ZrO2 alloying element. This study investigates, through a model approach, Gd2O3 dissolution at 1200 °C in a synthetic model CAS melt (64.4SiO2–9.3Al2O3–26.4CaO mol. %) and the stability of the precipitated Gd-apatite Ca2Gd8(SiO4)6O2 and Ca3Gd2(Si3O9)2 cyclosilicate phases. The two Gd-rich silicates have been synthesized by solid-state reaction and then characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). The interactions of Gd2O3, Gd-apatite and Gd-cyclosilicate with CAS have been observed by scanning electron microscope (SEM) after various times of contact at 1200 ̊C, giving information about dissolution/precipitation processes. Dissolution kinetics has been evaluated by electron probe microanalysis (EPMA) measurements in the CAS melt. A discussion is finally provided concerning the thermodynamic stability of all phases of the system and confronted with kinetics considerations.  相似文献   

8.
A calcium-magnesium aluminosilicate (CMAS) glass was prepared by melting a sample of desert sand to evaluate the high-temperature interactions between molten CMAS and yttrium disilicate (Y2Si2O7), an environmental barrier coating (EBC) candidate material. Cold-pressed pellets of 80?wt% Y2Si2O7 powder and 20?wt% CMAS glass powder were heat treated at 1200?°C, 1300?°C, 1400?°C and 1500?°C for 20?h in air. The resulting phases were evaluated using powder X-ray diffraction. In the second set of experiments, free standing hot-pressed Y2Si2O7 substrates with cylindrical wells were filled with CMAS powder to a loading of ~35?mg/cm2 and heat treated in air at 1200?°C, 1300?°C, 1400?°C and 1500?°C for 20?h. Scanning electron microscopy, energy-dispersive spectroscopy and electron microprobe analysis were used to evaluate the microstructure and phase compositions of specimens after heat treatment. An oxyapatite silicate (Ca2Y8(SiO4)6O2) phase was identified in all specimens after CMAS exposure regardless of heat treatment temperature. Apatite appeared to form by dissolution of Y2Si2O7 into molten CMAS, reacting with CaO in the melt according to the reaction 4Y2Si2O7 +?2CaO → Ca2Y8(SiO4)6O2 +?2SiO2, and followed by precipitation of the apatite phase.  相似文献   

9.
《Ceramics International》2019,45(16):19710-19719
Because gas turbine engines must operate under increasingly harsh conditions, the degradation of thermal barrier coatings (TBCs) by calcium-magnesium-alumina-silicate (CMAS) is becoming an urgent issue. Mullite (3Al2O3·2SiO2) is considered a potential material for CMAS resistance; however, the performance of mullite in the presence of CMAS is still unclear. In this study, mullite and Al2O3–SiO2 were premixed with yttria stabilized zirconia (YSZ) in different proportions, respectively. Porous ceramic pellets were used to conduct CMAS hot corrosion tests, and the penetration of molten CMAS and its mechanism were investigated. The thermal and mechanical properties of the samples were also characterized. It was found that the introduction of mullite and Al2O3–SiO2 mitigated the penetration of molten CMAS into the pellets owing to the formation of anorthite, especially at 45 wt% mullite/55 wt% YSZ. Compared with Al2O3–SiO2, mullite possesses a higher chemical activity and undergoes a faster reaction with CMAS, thus forming a sealing layer in a short time. Additionally, the thermal expansion coefficient, thermal conductivity, and fracture toughness of different samples were considered to guide the architectural design. Considering the CMAS corrosion resistance, thermal and mechanical performance of TBCs systematically, a TBC system with a multilayer architecture is proposed to provide a theoretical and practical basis for the design and optimization of the TBC microstructure.  相似文献   

10.
11.
《Ceramics International》2021,47(20):28685-28697
Because the CMAS corrosion and phase transformation at elevated temperatures above 1250 °C have limited the applications of traditional YSZ, the design of novel thermal barrier materials is a hotspot. GdTaO4 is considered as a type of potential novel thermal barrier material owing to its low thermal conductivity. In this study, the mechanical and thermal properties, CMAS corrosion resistance, and the wettability of the GdTaO4 were studied and compared with that of YSZ. The results show that the coefficient of thermal expansion and hardness of GdTaO4 are 14.1 × 10−6 K−1 (1350 °C) and 534.2 Hv0.3 respectively. The thickness of CMAS reaction layer of GdTaO4 is ~30.8 μm after 24 h reaction at 1350 °C, which is thinner than that of YSZ. After corrosion reaction, the CMAS glass aggregated instead of completely disappearing or continuously extending over the surface of GdTaO4. The main reaction product is Ca2Ta2O7, and the anorthite phase may not be detected, which is similar to YTaO4. By comparison, the dense substrate of YSZ became porous and CMAS glass has disappeared after 10 h. CMAS corrosion at 1350 °C. The on-line contact angle results show that the wettability of CMAS on GdTaO4 is worse than that on YSZ at 1350 °C, while the opposite of the work of adhesion, which indicates that GdTaO4 can remove liquid CMAS more easily than YSZ TBCs during the service. Furthermore, the corrosion depth and areas of GdTaO4 are smaller than those of YSZ in the same situation. These findings suggest that GdTaO4 possesses better high-temperature properties and CMAS corrosion resistance than YSZ as a kind of potential of thermal barrier material.  相似文献   

12.
《Ceramics International》2019,45(11):14366-14375
The penetration of calcium-magnesium-alumino-silicate (CMAS) is one of the most vital factors inducing the failure of air plasma sprayed thermal barrier coatings (APS TBCs). In present study, a two-dimensional periodical model considering the microstructures in ceramic top coat (TC) is built to study the cracking behavior in the TC of APS TBCs penetrated by CMAS during the cooling process. The CMAS penetration process is considered by filling the microstructures with the same shape of CMAS. The results show that CMAS penetration into the microstructures of the TC changed the stress distribution around the microstructures and induced a mixed crack type here. A microstructure with a relatively sharper geometry will experience a more severe stress state when penetrated by CMAS. The material discontinuity due to CMAS penetration also causes a slightly higher stress level around the microstructure at the CMAS deposit/TC interface, the CMAS penetrated layer and TC/BC interface. Thus, the horizontal cracks are easier to initiate from the microstructures with sharper geometry in these three regions.  相似文献   

13.
The hot corrosion behaviour of barium-strontium aluminosilicates (B1−xSxAS) attacked by Na2SO4 was investigated in the temperature range from 900 to 1100 °C and the weight change was measured as a function of the corrosion time. The surfaces and cross-sections of the corroded samples were observed by scanning electron microscopy in backscattered electron mode and energy-dispersive X-ray spectroscopy. The phase composition was characterized by X-ray diffraction. The results indicate that the hot corrosion of B1xSxAS by molten Na2SO4 was controlled by a diffusion-reaction mechanism. The strontium and/or barium cations diffused out of their aluminosilicate network, and the vacant sites were filled by sodium cations diffusing into the structure to form a NaAlSiO4 on the top. Due to their smaller radius, the strontium atoms showed a faster diffusion rate than the barium atoms. The corrosion depth significantly increased with the temperature and the strontium concentration in the B1−xSxAS.  相似文献   

14.
《Ceramics International》2021,47(22):31868-31876
Calcium-magnesium-alumina-silicate (CMAS) and molten salt corrosion pose great threats to thermal barrier coatings (TBCs), and recently, a coupling effect of CMAS and molten salt has been found to cause even severer corrosion to TBCs. In this study, the crystallization behavior of CMAS and CMAS+NaVO3 is investigated for potentially clarifying their corrosion mechanisms to TBCs. Results indicated that at 1000 °C and 1100 °C, CMAS was crystallized to form CaMgSi2O6, while at 1200 °C, the crystallization products were CaMgSi2O6, CaSiO3 and CaAl2Si2O8. The introduction of NaVO3 in CMAS reduced the crystallization ability, and as the NaVO3 content increased, glass crystallization occurred at a lower temperature, with crystallization products mainly consisting of CaAl2Si2O8 and CaMgSi2O6. At 1200 °C, CMAS+10 wt% NaVO3 was in a molten state without any crystallization, which suggested that NaVO3 addition in CMAS could reduce its melting point, indicating enhanced penetration ability in TBCs and thus increased corrosiveness.  相似文献   

15.
The temperature resistance of thermal barrier coatings (TBCs) has increased with the continuous development of the aviation industry. This increase in temperature resistance has resulted in a new challenge for TBCs, namely, calcium-magnesium-aluminum-silicate (CMAS) attack. As a new generation of thermal barrier coating candidate materials, Sm2Zr2O7 has good CMAS resistance properties. However, this material cannot meet the actual needs of aero-engines. Therefore, a change in the structure of Sm2Zr2O7 was used to improve the CMAS resistance properties in this paper. The relationship between the grain size of the ceramic and its resistance to CMAS penetration in the microstructure was investigated in detail.Nonpressure and SPS sintering processes were used to prepare Sm2Zr2O7 ceramics with different grain sizes that were then tested at high temperatures with CMAS. With the extension of penetration, the depth of CMAS penetration in microscale Sm2Zr2O7 ceramics increased sharply with increasing reaction time, while the penetration depth of CMAS into nanoscale Sm2Zr2O7 ceramics increased slowly. After 48 h of penetration, the penetration depth of the microscale Sm2Zr2O7 ceramics was 86 μm, and the penetration depth of the nanoscale Sm2Zr2O7 ceramics was only 47 μm. Compared with the microscale Sm2Zr2O7 ceramics, the nanoscale Sm2Zr2O7 ceramics had better CMAS resistance because the lower diffusion activation energy of the nanocrystalline grains accelerated the formation of a dense barrier layer.  相似文献   

16.
Phase equilibria in the CaO-TaO2.5-YO1.5 system were experimentally investigated and the isothermal section at 1400 °C was constructed. Ten three-phase equilibrium fields were determined, and the solid solution regions of the binary compounds were analyzed. The Ca4Ta2O9 in the ternary system is marked as (YO3/2)x(Ca2/3Ta1/3O3/2)1?x. Its maximum solubility is the formula of Ca2YTaO6. The solubilities of CaO in the M′-YTaO4 and fluorite phases reach up to about 2.0 mol% and 8.9 mol%, respectively. A ternary pyrochlore-type phase was found, which was expressed as the chemical formula of Ca0.5–0.5xY0.75xTa0.5–0.25xO1.75. The morphology of pyrochlore was polygonal, and it was the only reaction product when the YTaO4 oxides were corroded by the molten silicate (CMAS). Since the CaO is the main reactant, the CaO-TaO2.5-YO1.5 phase diagram was used to successfully explain the corrosion behavior of YTaO4. The current experimental phase diagram is important to understand the CMAS degradation of the thermal barrier coatings.  相似文献   

17.
热障涂层作为航空发动机的关键技术,一旦在使用过程中失效将导致严重的后果。然而,热障涂层在使用过程中不可避免地会接触到钙镁铝硅酸盐(CMAS),引发涂层剥落,使高温合金直接暴露在高温燃气中,带来巨大的危险。因此,热障涂层的CMAS侵蚀及防护问题近年来得到了广泛关注。本文在介绍传统氧化钇稳定氧化锆(YSZ)涂层受CMAS侵蚀现状的基础上,明确了CMAS侵蚀YSZ的化学作用过程,阐明了YSZ涂层的失效机制,比较了不同种类CMAS的侵蚀效果,总结了目前热障涂层抵抗CMAS侵蚀的主要方法,并阐述了基于自损型防护原理开展的新型热障涂层材料的CMAS侵蚀行为研究进展,以期为未来航空发动机用热障涂层陶瓷材料的选择和CMAS防护提供有益参考。  相似文献   

18.
Thermal barrier coatings (TBCs) produced by electron beam physical vapor deposition (EB-PVD) or plasma spray (PS) usually suffer from molten calcium-magnesium-alumino-silicate (CMAS) attack. In this study, columnar structured YSZ coatings were fabricated by plasma spray physical vapor deposition (PS-PVD). The coatings were CMAS-infiltrated at 1250?°C for short terms (1, 5, 30?min). The wetting and spreading dynamics of CMAS melt on the coating surface was in-situ investigated using a heating microscope. The results indicate that the spreading evolution of CMAS melt can be described in terms of two stages with varied time intervals and spreading velocities. Besides, the PS-PVD columnar coating (~100?μm thick) was fully penetrated by CMAS melt within 1?min. After the CMAS attack for 30?min, the original feathered-YSZ grains (tetragonal phase) in both PS-PVD and EB-PVD coatings were replaced by globular shaped monoclinic ZrO2 grains in the interaction regions.  相似文献   

19.
In this study, three different industrial frits BaO–Al2O3–SiO2 (BAS), CaO–MgO–Al2O3–SiO2 (CMAS), CaO–ZrO2–Al2O3–SiO2 (CZAS) have been deposited on porcelainized stoneware tiles by plasma spraying. In the as-sprayed conditions, the microstructure of the coatings is defective because of pores, microcracks and low intersplat cohesion. Hot stage microscope and differential thermal analysis measurements made on the glass powders allowed to characterize the frits thermal behaviour. Post process thermal treatments have been arranged, following these indications as well as preliminary tests, in order to achieve the lowest porosity and the highest resistance to abrasion. At the chosen temperatures, a microstructural improvement has been induced, but in the BAS specimens, an optimal sintering has not been accomplished because of the unavoidable full overlapping of the sintering and crystallization processes.  相似文献   

20.
Influenza A viruses (IAVs) initiate infection by attaching Hemagglutinin (HA) on the viral envelope to sialic acid (SA) receptors on the cell surface. Importantly, HA of human IAVs has a higher affinity for α-2,6-linked SA receptors, and avian strains prefer α-2,3-linked SA receptors, whereas swine strains have a strong affinity for both SA receptors. Host gene CMAS and ST3GAL4 were found to be essential for IAV attachment and entry. Loss of CMAS and ST3GAL4 hindered the synthesis of sialic acid receptors, which in turn prevented the adsorption of IAV. Further, the knockout of CMAS had an effect on the adsorption of swine, avian and human IAVs. However, ST3GAL4 knockout prevented the adsorption of swine and avian IAV and the impact on avian IAV was more distinct, whereas it had no effect on the adsorption of human IAV. Collectively, our findings demonstrate that knocking out CMAS and ST3GAL4 negatively regulated IAV replication by inhibiting the synthesis of SA receptors, which also provides new insights into the production of gene-edited animals in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号