首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2020,46(3):2585-2591
SiO2-MgO ceramics containing different weight fractions (0, 0.5, 1, 2, and 4 wt%) of SiO2 powder were prepared by mixing nano MgO powder, and the powder mixtures were densified by spark plasma sintering (SPS). The effect of SiO2 addition and SPS method on the sintering behavior, microstructure and mechanical properties were investigated. Results were compared to specimens obtained by conventional hot pressing (HP) under a similar sintering schedule. The highest relative density, flexural strength and hardness of 2 wt% SiO2-MgO ceramics reached 99.98%, 253.99 ± 7.47 MPa and 7.56 ± 0.21 GPa when sintered at 1400 °C by SPS, respectively. The observed improvement in the sintering behavior and mechanical properties are mainly attributed to grain boundary "strengthening" and intragranular "weakening" of the MgO matrix. Furthermore, the spark plasma sintering temperature could be decreased by more than 100 °C as compared with the HP method, SPS favouring enhanced grain boundary sliding, plastic deformation and diffusion in the sintering process.  相似文献   

2.
《Ceramics International》2017,43(18):16238-16247
Results obtained during in-vitro experiments concerning human osteoblasts cultivated on the surface of dense samples produced by Spark Plasma Sintering from three types of hydroxyapatite powders are described and discussed. The sintered products display diverse composition and microstructures which are found to significantly influence the biological response of the cells. Osteoblasts adhesion, viability and proliferation are quantitatively comparable for the three classes of bioceramics, whereas matrix mineralization occurs only in products exclusively consisting of hydroxyapatite. Correspondingly, a calcium-phosphate layer exhibiting a trabecular-like microstructure is deposited on the materials surface. Matrix mineralization is favored when the substrate is composed of submicrometer-sized apatite grains. On the other hand, the latter phenomena is markedly suppressed, and so does the formation of the new apatite phase, when cells are seeded on sintered disks composed of β-Tri-Calcium Phosphate, which was formed during the sintering process from the decomposition of initial apatite.  相似文献   

3.
《Ceramics International》2021,47(2):2255-2260
This study firstly developed Hf1-xVxB2 (x = 0, 0.01, 0.02, 0.05) powders, which were derived from borothermal reduction of HfO2 and V2O5 with boron. The results revealed that significantly refined Hf1-xVxB2 powders (0.51 μm) could be obtained by solid solution of VB2, and x ≥ 0.05 was a premise. However, as the content of V-substitution for Hf increased, Hf1-xVxB2 ceramics sintered by spark plasma sintering at 2000 °C only displayed a slight densification improvement, which was attributed to the grain coarsening effect induced by the solid solution of VB2. By incorporating 20 vol% SiC, fully dense Hf1-xVxB2-SiC ceramics were successfully fabricated using the same sintering parameters. Compared with HfB2-SiC ceramics, Hf0.95V0.05B2-20 vol% SiC ceramics exhibited an elevated and comparable value of Vickers hardness (23.64 GPa), but lower fracture toughness (4.09 MPa m1/2).  相似文献   

4.
Hexagonal boron nitride (h-BN) can reinforce boron carbide (B4C) ceramics, but homogeneous dispersion of h-BN is difficult to achieve using conventional methods. Herein, B4C/h-BN composites were manufactured via the transformation of cubic (c-) BN during spark plasma sintering at 1800 °C. The effects of the c-BN content on the microstructure, densification, and mechanical properties of B4C/h-BN composites were evaluated. In situ synthesized h-BN platelets were homogeneously dispersed in the B4C matrix and the growth of B4C grains was effectively suppressed. Moreover, the c-BN to h-BN phase transformation improved the sinterability of B4C. The sample with 5 vol.% c-BN exhibited excellent integrated mechanical properties (hardness of 30.5 GPa, bending strength of 470 MPa, and fracture toughness of 3.84 MPa⋅ m1/2). Higher c-BN contents did not significantly affect the bending strength and fracture toughness but clearly decreased the hardness. The main toughening mechanisms were crack deflection, crack bridging, and pulling out of h-BN.  相似文献   

5.
The unique combination of SiC properties opens the ways for a wide range of SiC-based industrial applications. Dense silicon carbide bodies (3.18±0.01 g/cm3) were obtained by an SPS treatment at 2050 °C for 10 min using a heating rate of 400 °C/min, under an applied pressure of 69 MPa. The microstructure consists of fine, equiaxed grains with an average grain size of 1.29±0.65 μm. TEM analysis showed the presence of nano-size particles at the grain boundaries and at the triple-junctions, formed mainly from the impurities present in the starting silicon carbide powder. The HRTEM examination revealed high angle and clean grain boundaries. The measured static mechanical properties (HV=32 GPa, E=440 GPa, σb=490 MPa and KC 6.8 MPa m0.5) and the Hugoniot Elastic Limit (HEL=18 GPa) are higher than those of hot-pressed silicon carbide samples.  相似文献   

6.
Mg-doped sialon ceramics with the composition of M0.4Si10.2Al1.8O1N15 were fully densified by hot pressing at 1850 °C for 1 h, using 0.5 wt.% MgF2 or CaF2 as a sintering additive. Densification behavior, phase assemblage, microstructure, and mechanical and optical properties were investigated in detail. The addition of fluorides, especially MgF2, not only resulted in more high-temperature liquid by promoting the dissolution of more N and other constituents but also reduced the viscosity of liquid due to the terminal effect of fluorine. Consequently, the densification was effectively improved. Additionally, the fluoride addition facilitated the formation of a small amount of β-sialon. Both the samples possessed high hardness (∼20 GPa) and fracture toughness (∼4.2 MPa m1/2). The CaF2-added sample exhibited higher infrared transmittance than its counterpart due to less residual glass phase. The present work implies that fluorides are also very effective sintering additives for densifying α-sialon.  相似文献   

7.
The aim of this work was to evaluate the role of MoSi2 content (5, 10, 15 wt%) in the mechanical and tribological behavior of TZ4YS-MoSi2 composites obtained by colloidal processing and spark plasma sintering (SPS) at 1500 °C. Firstly, the densification of TZ4YS-MoSi2 composite and the shrinkage-rate curves by SPS applying 80 MPa from 1300 °C to 1500 °C is studied. The hardness and fracture toughness values confirmed that up to 99.9% densification is gradually reached with increasing MoSi2 percentage. Secondly, pin-on-disk tribological tests at different distances (1, 5, 15 and 2000 m) with Al2O3 as counterpart were performed to record the behavior of the materials in the initial and final stages of wear. The MoSi2 content was associated to the beginning of the transition from mild to severe wear, higher the amount of MoSi2 faster is the transition. This behavior was correlated with MoSi2 content, which aids the formation of a tribolayer.  相似文献   

8.
《Ceramics International》2023,49(7):10748-10755
Ultra-high temperature HfB2 ceramic with nearly full densification is achieved by using gradient sintering process of SPS without any additives. The effect of the sintering temperature on the densification behavior, relative density, microstructure, mechanical and thermionic properties is systematically investigated. The results show that the fast densification of HfB2 ceramic occurs at the heating stage, and the highest relative density of 96.75% is obtained at T =1950 °C, P = 60 MPa and t =10min. As the temperature is increased from 1800 to 1950 °C, the grain size of HfB2 increases from 6.12 ±1.33 to 10.99 ± 2.25 μm, and refined microstructure gives the excellently mechanical properties. The highest hardness of 26.34 ±2.1GPa, fracture toughness of 7.12 ± 1.33 MPa m1/2 and bending strength of 501 ±10MPa belong to the HfB2 ceramic obtained at T =1950°C. Moreover, both the Vickers hardness and fracture toughness obey the normal indentation size effect. HfB2 ceramic also exhibits the thermionic emission characterization with the highest current density of 6.12 A/cm2 and the lowest work function of 2.92 eV.  相似文献   

9.
《Ceramics International》2023,49(5):7404-7413
TiB2 composite ceramics containing different amounts of Ti and TiC were fabricated via spark plasma sintering (SPS), and effects of their addition contents on the microstructure and mechanical properties were discussed. The newly formed phases of TiB with a cubic lattice structure in the composite ceramics were observed. At a relatively low temperature of 1510 °C, pressure of 50 MPa, and holding time of 5 min, the TiB2 composite ceramic with 30 wt% TiC and 10 wt% Ti additions acquired an excellent strength of 727 MPa and a high toughness of 7.62 MPa m1/2. The improvement in strength and toughness was attributed to the mixed fracture mode, second phase strengthening, and increased energy consumption for crack propagation caused by the newly formed phases and fine TiC particles. In addition, the significant effects of the Ti and TiC addition contents on the densification temperature and mechanical properties of the composite ceramics were determined using analysis of variance (ANOVA).  相似文献   

10.
Fe doped La2CoMnO6 perovskite La2Co(1-x)FexMnO6 (abbreviated as LCFxMO, x = 0.1˜0.4) ceramics exhibiting P21/n phase and dense structure with micron grains resulted from the lower sintering temperature of 930 °C were fabricated by plasma activated sintering. The Co2+/Mn4+ concentration in LCFxMO ceramics gradually increased with the increase of Fe doping, then decreased due to excessive doping, reflecting the change of order degree of B-site cations. The Co2+/Mn4+ concentration reached the highest value in LCF0.2MO, which proved the ascendant B-site cations ordering degree of LCF0.2MO. Moreover, the smaller grains resulted from rapid sintering period was also one of another cause of high order degree. It was found that the saturation magnetization was greatly enhanced by a small amount of Fe doping. Comparing to other Fe doped content of LCFxMO ceramics, the LCF0.2MO ceramic also had the largest saturation magnetization (57.05 emu/g).  相似文献   

11.
12.
Homogenous distribution of whiskers in the ceramic matrix is difficult to be achieved. To solve this problem, B4C-SiCw powder mixtures were freeze dried from a slurry dispersed by cellulose nanofibrils (CellNF) in this work. Dense B4C ceramics reinforced with various amounts of SiCw up to 12 wt% were consolidated by spark plasma sintering (SPS) at 1800 °C for 10 min under 50 MPa. During this process, CellNF was converted into carbon nanostructures. As iron impurities exist in the starting B4C and SiCw powders, both thermodynamic calculations and microstructure observations suggest the dissolution and precipitation of SiCw in the liquids composed of Fe-Si-B-C occurred during sintering. Although not all the SiCw grains were kept in the final ceramics, B4C-9 wt% SiCw ceramics sintered at 1800 °C still exhibit excellent Vickers hardness (35.5 ± 0.8 GPa), flexural strength (560 ± 9 MPa) and fracture toughness (5.1 ± 0.2 MPa·m1/2), possibly contributed by the high-density stacking faults and twins in their SiC grains, no matter in whisker or particulate forms.  相似文献   

13.
By adding a small amount of tungsten carbide (WC) as sintering aids, nearly fully dense TiC ceramics were obtained by spark plasma sintering at 1450–1600 °C. The results show that the densification temperature of TiC ceramic was significantly decreased with the addition of 3.5 wt% WC. Compared with the monolithic TiC, the densification temperature of TiC–3.5 wt% WC is lower by ~150 °C and no deterioration of mechanical properties is observed. The TiC composite sintered at 1600 °C exhibits full density, a Vickers hardness of 28.2 ± 1.2 MPa, a flexural strength of 599.5 ± 34.7 MPa and a fracture toughness of 6.3 ± 1.4 MPa m1/2.  相似文献   

14.
Densifications of hot-pressed ZrC ceramics with Zr and graphite additives were studied at 1800-2000 °C. ZrC with 8.94 wt% Zr additive (named ZC10) sintered at 1900-2000 °C achieved higher relative densities (>98.4%) than that of additive-free ZrC (<83%). The densification improvement was attributed to the formation of non-stoichiometric ZrC0.9, whereas there had rapid grain growth with grain size about 50-100 μm in ZC10. By adding co-doped additive of Zr plus C and adjusting the molar ratio of Zr/C, ZrC with co-doped additives with Zr/C molar ratio at 1:2 (named ZC12), ZrC ceramics with both high relative density (98.4%) and fine microstructures (grain size about 5-10 μm) were obtained at 1900-2000 °C. Effect of formation of non-stoichiometric ZrC1−x on densification of ZrC was discussed. The Vickers hardness and indentation toughness of ZC10 and ZC12 samples sintered at 1900 °C were 17.8 GPa and 3.0 MPa m1/2, 16.2 GPa and 4.7 MPa m1/2, respectively.  相似文献   

15.
B4C based ceramics were fabricated with different Fe3Al contents as sintering aids by spark plasma sintering at relatively low temperature (1700 °C) in vacuum by applying 50 MPa pressure and held at 1700 °C for 5 min. The effect of Fe3Al additions (from 0 to 9 wt%) on the microstructure and mechanical properties of B4C has been studied. The composition and microstructure of as-prepared samples were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe microanalyzer (EPMA) equipped with WDS (wavelength dispersive spectrometry) and EDS. The mixtures of B4C and Fe3Al underwent a major reaction in which the metal borides and B4C were encountered as major crystallographic phases. The sample with 7 wt% of Fe3Al as a sintering aid was found to have 32.46 GPa Vickers hardness, 483.40 MPa flexural strength, and 4.1 MPa m1/2 fracture toughness which is higher than that of pure B4C.  相似文献   

16.
This work was focused on the determination of densification mechanisms during Spark Plasma Sintering (SPS) of Ho:Lu2O3 nanopowders. Strong variation of the stress exponent n was evidenced during the sintering process. At low relative density (i.e. ρ < 66 %), n = 3 and powder particles rearrangement and coalescence take place because of high value of effective stress and low size of primary nanoparticles. Then, for ρ between 66 % and 85 %, the stress exponent decreases to n = 2 then n = 1. Such values were related to Rachinger then Lifshitz sliding mechanisms, the last one was associated with an average activation energy of 565 kJ.mol−1. At the final densification stage (ρ > 85 %), the stress exponent suddenly increases to 4 in accordance with a power-law creep. From these investigations, an optimized thermomechanical cycle was proposed to obtain highly transparent Ho:Lu2O3 ceramics suitable for laser applications.  相似文献   

17.
《Ceramics International》2017,43(6):5136-5144
Stoichiometric Tantalum carbide (TaC) ceramics were prepared by reaction spark plasma sintering using 0.333–2.50 mol% Si3N4 as sintering aid. Effects of the Si3N4 addition on densification, microstructure and mechanical properties of the TaC ceramics were investigated. Si3N4 reacted with TaC and tantalum oxides such as Ta2O5 to form a small concentration of tantalum silicides, SiC and SiO2, with significant decrease in oxygen content in the consolidated TaC ceramics. Dense TaC ceramics having relative densities >97% could be obtained at 0.667% Si3N4 addition and above. Average grain size in the consolidated TaC ceramics decreased from 11 µm at 0.333 mol% Si3N4 to 4 µm at 2.50 mol% Si3N4 addition. The Young's modulus, Vickers hardness and flexural strength at room temperature of the TaC ceramic with 2.50 mol% Si3N4 addition was 508 GPa, 15.5 GPa and 605 MPa, respectively. A slight decrease in bending strength was observed at 1200 °C due to oxidation of the samples.  相似文献   

18.
Sintering of Th1-xYxO2-x/2 ceramics (x = 0.01, 0.08, 0.15 and 0.22), planned to be used as solid electrolytes in oxygen sensors for sodium-cooled fast nuclear reactors, was investigated. High densification state (i.e. up to 98% TD) was reached after 4 h of heat treatment at 1600 °C and beyond. In addition, ESEM observations showed a major effect of yttrium on grain size due to solute drag effects. Sintering maps were plotted for all the samples and evidenced different stages driven by densification and grain growth. Grain growth was found to be strongly slowed down for x > 0.01, resulting in high values of relative density correlated to submicrometric grain size. Also, activation energies related to densification and grain growth were evaluated around 450 and 500–650 kJ mol−1, respectively. These results led to deliver guidelines for the formulation and sintering of Th1-xYxO2-x/2 ceramics in prospect of their use as a solid electrolyte.  相似文献   

19.
J.L. Li  G.Z. Bai  J.W. Feng  W. Jiang 《Carbon》2005,43(13):2649-2653
Bulk carbon nanotube samples were prepared by spark plasma sintering. The as-prepared bulk carbon nanotube material exhibited brittle fracture similar to that of common ceramics. Its fracture toughness was around 4.2 MPa m1/2 while flexural strength was 50 MPa due to the weak bonding between carbon nanotubes. Obvious carbon nanotube bridging was found during the development of the crack induced by an indenter, which provides a possibility of carbon nanotube tough material.  相似文献   

20.
《Ceramics International》2020,46(6):7510-7516
In this study, zirconia-toughened alumina (ZTA) samples with different amounts of CeO2 were prepared by the spark plasma sintering method. The phase composition and microstructure of the samples were examined by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The addition of CeO2 results in grain refinement and density increase; moreover, CeO2 stabilises the high-temperature metastable phase. As the amount of CeO2 reaches 7 wt%, a new CeAl11O18 phase appears. The Vickers hardness, modulus, and fracture toughness of the samples depend to a large extent on the grain size, relative density, and existence of the second phase. Among the composites, that with 5 wt% CeO2 shows the best performance with the highest values of relative density, Vickers hardness, and fracture toughness: 96.51%, 1688 HV, and 9.91 MPa.√m, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号