首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil arching and tensioned membrane effects are two main load transfer mechanisms for geosynthetic-reinforced pile-supported (GRPS) embankments over soft soils or voids. Evidences show that the tensioned membrane effect interacts with the soil arching effect. To investigate the soil arching evolution under different geosynthetic reinforcement stiffness and embankment height, a series of discrete element method (DEM) simulations of GRPS embankments were carried out based on physical model tests. The results indicate that the deformation pattern in the GRPS embankments changed from a concentric ellipse arch pattern to an equal settlement pattern with the increase of the embankment height. High stiffness geosynthetic hindered the development of soil arching and required more subsoil settlement to enable the development of maximum soil arching. However, soil arching in the GRPS embankments with low stiffness reinforcement degraded after reaching maximum soil arching. Appropriate stiffness reinforcement ensured the development and stability of maximum soil arching. According to the stress states on the pile top, a concentric ellipse soil arch model is proposed in this paper to describe the soil arching behavior in the GRPS embankments over voids. The predicted heights of soil arches and load efficacies on the piles agreed well with the DEM simulations and the test results from the literature.  相似文献   

2.
Geosynthetic-reinforced and pile-supported (GRPS) embankments are becoming more and more popular as this technique showed good performances in practice. Various design methods were introduced to analyze GRPS embankments. However, the applicability of these design methods was not always fully validated. This paper focuses on the review of projects containing field observations of GRPS embankments. The comparison results showed that the assumptions related to the subsoil support, geosynthetic, arching shape, and its evolution are not consistent in the analytical methods. Comparison results with twenty-five full-scale cases and six series of experiments emphasize that these available design methods produce significantly different results in predicting loads transfer mechanism. The analytical models predict arching for cohesionless fill better that for cohesive fill soils. Besides, the analytical methods which consider subsoil support such as the CUR226 and EBGEO methods give results that are in a better agreement with experimental data as compared to other methods which do not consider the subsoil support. The CUR226 (2016) analytical model seems to be able to give the best performance with measured data when compared to other design methods. Finally, the results pointed out that the limit equilibrium model is adequate and has good performance.  相似文献   

3.
《Soils and Foundations》2021,61(5):1319-1342
Geosynthetic-reinforced and pile-supported (GRPS) systems provide an economic and effective solution for embankments. The load transfer mechanisms are tridimensional ones and depend on the interaction between linked elements, such as piles, soil, and geosynthetics. This paper presents an extensive parametric study using three-dimensional numerical calculations for geosynthetic-reinforced and pile-supported embankments. The numerical analysis is conducted for both cohesive and non-cohesive embankment soils to emphasize the fill soil cohesion effect on the load and settlement efficacy of GRPS embankments. The influence of the embankment height, soft ground elastic modulus, improvement area ratio, geosynthetic tensile stiffness and fill soil properties are also investigated on the arching efficacy, GR membrane efficacy, differential settlement, geosynthetic tension, and settlement reduction performance. The numerical results indicated that the GRPS system shows a good performance for reducing the embankment settlements. The ratio of the embankment height to the pile spacing, subsoil stiffness, and fill soil properties are the most important design parameters to be considered in a GRPS design. The results also suggested that the fill soil cohesion strengthens the soil arching effect, and increases the loading efficacy. However, the soil arching mobilization is not necessarily at the peak state but could be reached at the critical state. Finally, the geosynthetic strains are not uniform along the geosynthetic, and the maximum geosynthetic strain occurs at the pile edge. The geosynthetic deformed shape is a curve that is closer to a circular shape than a parabolic one.  相似文献   

4.
A simplified method for assessing the serviceability performance of geosynthetic reinforced and pile-supported embankment is presented, where the subsoil consolidation is introduced remaining compatible with the development of soil arching and the reinforcement sag. A piecewise function of the ground reaction curve is developed and used to quantify the arching efficiency. The link between the arching evolution and the subsoil consolidation is then established through the load-carrying equilibrium in the area between piles together with the tensile membrane theory. The reaction of the subsoil is described using the 1-D consolidation theory where the stress history is considered. A parametric study is performed to demonstrate the serviceability performance of a geosynthetic reinforced and pile-supported embankment. The serviceability design of the geosynthetic reinforced and pile-supported embankment is achieved with the proposed method which offers an approach to estimate the time consumed and the subsoil settlement required to achieve a service state.  相似文献   

5.
陈福全  李阿池 《岩土工程学报》2007,29(12):1804-1808
具有深厚软土层的路堤若采用桩承加筋式复合地基,可提高地基承载力,减少路堤不均匀沉降,也可布置成疏桩,降低工程成本,在国内外得到越来越广泛的应用,但还没有可靠实用的设计计算方法,且现有的设计均忽略了桩间土的承载作用,这与工程实际有很大差别。基于三维土拱效应,改进Hewlett土拱效应算法,得到桩承式路堤的桩土荷载分担比,进而考虑加筋体影响以及桩间土承载作用,推导桩土应力比计算式,并将此式应用于路堤的设计。  相似文献   

6.
Geosynthetic reinforced column supported embankments predominantly utilise two mechanisms to transfer embankment loads towards column heads, soil arching and membrane actions. When undertaking the design of column supported embankments, it is common practice to perform a two-step design, whereby the arching actions are estimated independently of the subsoil deformation and membrane actions. This approach is unable to capture the deformation dependency exhibited by both arching and membrane actions. This paper presents deformation dependent arching and membrane action models and implements them within an interaction diagram. It is shown that an interaction diagram-based design approach is capable of performing an ultimate and serviceability limit state design of a geosynthetic reinforced column supported embankment. In contrast, most existing analytical design methods only consider the ultimate limit state. The proposed method is applied to a design example where the benefits of such a design approach are demonstrated.  相似文献   

7.
The stress conditions of geosynthetic reinforcements (GRs) are crucial in achieving the accurate serviceability design of geosynthetic-reinforced pile-supported (GRPS) embankments. However, the sensitivity of load distribution to the settlement process has been reported in geosynthetic-reinforced embankment overlying cavities. In this study, a three-dimensional model embankment was used to perform experiments and evaluate the load acting on the GR. A flexible pressure-mapping sensor was introduced to investigate the pressure distribution for two types of supporting conditions: partitioned displacement by multiple movable trapdoors and even trapdoor settlement underneath different subsoil materials. The results showed that the load on the GR was concentrated on the strip areas between adjacent pile heads along with the settlement. The measured load on the GR strip area was related to the settlement process and finally exhibited a U-shaped distribution after detachment from the support underneath. The soil arch height in the subgrade continuously increased with the settlement; meanwhile, the pile head load increased rapidly at first and then decreased slightly or remained stable depending on the foundation support stiffness. For both types of settlement behaviours, soil arching exhibited stress history-related characteristics that influence the load transfer in GRPS embankments.  相似文献   

8.
In recent years, geosynthetic reinforced column supported embankments (GRCSEs) have become an increasingly popular design solution for road and rail infrastructure constructed over soft soil sites. However, the serviceability behaviour and deformation that often govern the suitability of their design is not well understood. This is due, in part, to the difficulties in describing the arching stress development in the load transfer platform (LTP). This paper highlights the need for coupled arching stress-deformation models to describe accurately serviceability behaviour. This approach contrasts the widely adopted two-step design approach, which uses limit-equilibrium models that de-couple the arching stress-deformation relationship to describe ultimate limit state behaviour. Using an analytical example, an arching stress/deformation model and an empirical relationship (developed by others) relating base LTP settlement to surface settlement, the relationship between serviceability behaviour and soft soil parameters is highlighted and the conditions leading to progressive collapse in GRCSEs are described. The approach presented provides a means to predict serviceability behaviour, and at the same time, raises questions about the long-term performance and the manner in which acceptable performance has been achieved in the short-term in several field case studies. In particular, those constructed at, or near, a minimum embankment height.  相似文献   

9.
 土拱效应分析是桩承式路堤设计时需要解决的首要问题,在总结分析已有现场测试资料及研究成果的基础上,建立能考虑路堤填筑过程与地基土固结相耦合的土拱效应计算模型。该计算模型比较完整地反映了从路堤开始填筑直到地基土固结完成整个过程中土拱效应的发展变化历程,模型计算结果与现场实测结果比较吻合。利用该计算模型对台缙高速公路工程桩承式路堤土拱效应及桩身中性点位置的变化特征进行分析,研究结果表明:(1) 在路堤填筑过程中,桩土应力比迅速增加,路堤填筑完毕直至地基土固结完成这个过程中,桩土应力比虽然有所变化,但变化的幅度不大,与路堤刚填筑完毕时的桩土应力比相比,后期桩土应力比的变化幅度不大于15%;(2) 在路堤填筑及地基土固结过程中,桩身中性点位置经历了先逐渐向下移动、尔后向上移动、再向下移动、最终趋于稳定位置的过程。该研究成果可为桩承式路堤设计提供有益的参考。  相似文献   

10.
Given the limit studies on the behavior of GRPS embankments with different numbers of geosynthetic layers and pile caps in a triangular pattern, this paper conducted a series of three-dimensional (3-D) numerical analyses. The numerical model was verified based on a well-instrumented large-scale test. A 3-D soil arch model was proposed for pile caps in a triangular pattern, in which the crown of the upper boundary was approximately 1.4 times the clear spacing of pile caps. Inclusion of geosynthetic reinforcement reduced the soil arching effect but increased the total load carried by the piles. For the case with three geosynthetic layers, the lower layer had a significant effect on load transfer than the middle and upper layers, but each layer had an almost proportional effect on mitigating the differential settlement on the top of the gravel cushion. The maximum strains in the reinforcement concentrated on the geosynthetic strips bridging over two adjacent square cap corners.  相似文献   

11.
There is not one generally accepted approach for the design of geogrid-reinforced pile-supported (GRPS) embankments. Relevant mechanisms include arching of the embankment material, but also the effect of geogrid reinforcement and potentially a contribution from the underlying subsoil. This paper presents a simple design approach to identify the contribution of all three mechanisms, in which the contribution of multi-layered geogrid reinforcement is also presented. To validate the theoretical predictions for the effect of geogrid reinforcement and the potential contribution of underlying subsoil, a series of three-dimensional finite element analyses are conducted. It is found that a point of ‘maximum arching’ is increased with the height of embankment. This study also presents that the reinforcement could reduce the ultimate stress on the subsoil. However, this requires significant sag of the reinforcement. It is found that the sag of reinforcement is very sensitive to the span of the reinforcement between piles, but relatively insensitive to the stiffness of the reinforcement. For a case with three layers of geogrid, the upper two grids carry relatively little tension compared to the bottom layer. This in turn leads to an approximate but simple equation of vertical equilibrium which may be of use in design.  相似文献   

12.
为了研究桩承式加筋路堤在移动荷载作用下的特性,采用FLAC 3D软件建立了移动荷载作用下道路的三维动力流固耦合分析模型,对桩承式加筋路堤和天然路堤在移动荷载作用下的竖向变形、桩土应力比、超孔隙水压力、加速度等进行了对比分析,并研究了不同轴载对路堤竖向变形的影响。分析结果表明:移动荷载作用下,桩承式加筋路堤通过桩体土拱效应和格栅张拉膜效应的联合作用,其路面竖向变形、桩土应力比、超孔隙水压力、加速度均比天然路堤的结果明显减小;随着轴载的增加,桩承式加筋路堤路面竖向变形不断增大。  相似文献   

13.
This paper presents a full-scale model study of geosynthetic-reinforced pile-supported (GRPS) track-bed to investigate the effect of geogrid reinforcement and the evolution of pile efficacy (ratio of load borne by the pile cap to the total applied load). Three testing procedures were followed: model construction, static loading and subsoil settlement (simulated by discharging of water bags surrounding the pile caps). The results indicated that partially mobilized soil arching was developed during the first two procedures. When sufficient subsoil settlement was reached, fully mobilized soil arching was established. The geogrid was proven to effectively transfer load from the water bag to the pile cap. The stress difference induced by the geogrid showed lower absolute values for the corresponding sensors above the water bag during loading and settlement procedures, due to the inverse triangular distribution of the vertical-directional geogrid tensile force above the water-bag area. The experimental results of pile efficacy were compared to the estimations of four analytical models. For the present test at partially mobilized arching state, the pile efficacy increased with the construction height increasing and decreased as the static loading increased. The partially mobilized arching also resulted in overestimations of the pile efficacy from all four analytical models. At fully mobilized arching state, the pile efficacy stayed relatively stable, being well predicted by all four analytical models.  相似文献   

14.
Dimiter Alexiew 《Bautechnik》2004,81(9):710-716
Geogrid‐reinforced embankments on piles or columns: Methods and case studies. Embankments on soft subsoil supported by piles or similar elements and high‐strength geosynthetic reinforcement on top of them have important advantages compared to “conventional” embankment foundation: no consolidation time is required, there is no import/export of additional embankment soil to accelerate consolidation or to compensate the settlement, practically no additional settlement occurs under traffic etc. The application of such solutions is growing recently worldwide. Corresponding design procedures meantime have more than 10 years of history going through significant development, scientific and verification efforts across Europe. A critical overview of these procedures is presented pointing out the increasing precision and reliability. Some typical interesting projects from the last 10 years are briefly described and discussed including both railroad and road applications, different concepts and geosynthetic reinforcements, measurement programs and experience.  相似文献   

15.
For design of a geosynthetic-reinforced pile-supported (GRPS) embankment over soft soil, the methods used to calculate strains in geosynthetic reinforcement at a vertical stress were mostly developed based on a plane-strain or two-dimensional (2-D) condition or a strip between two pile caps. These 2-D-based methods cannot accurately predict the strain of geosynthetic reinforcement under a three-dimensional (3-D) condition. In this paper, a series of numerical models were established to compare the maximum strains and vertical deflections (also called sags) of geosynthetic reinforcement under the 2-D and 3-D conditions, considering the following influence factors: soil support, cap shape and pattern, and a cushion layer between cap and reinforcement. The numerical results show that the maximum strain in the geosynthetic reinforcement decreased with an increase of the modulus of subgrade reaction. The 2-D model underestimated the maximum strain and sag in the geosynthetic reinforcement as compared with the 3-D model. The cap shape and pattern had significant influences on the maximum strains in the geosynthetic reinforcements. An empirical method involving the geometric factors of cap shape and pattern, and the soil support was developed to convert the calculated strains of geosynthetic reinforcement in piled embankments under the 2-D condition to those under the 3-D condition and verified through a comparison with the results in the literature.  相似文献   

16.
Three centrifuge model tests were conducted to investigate the influence of the number of geosynthetic layers and the pile clear spacing on the global performance of Geosynthetic-Reinforced Pile-Supported (GRPS) embankments with side slopes constructed on soft soil foundations. This study found that the change of the geogrid number from one to two did not significantly affect the foundation settlement, the geogrid deflection, and the vertical stress at the embankment base. For the GRPS embankment with a single geogrid layer, the geogrid strain distribution at the embankment base showed an “M” shape along the transverse direction with the maximum strain near the embankment shoulder. When two geogrid layers with sand in between were used, the upper and lower layers showed different strain distributions with the maximum strains happening near the embankment shoulder and at the center of the embankment for the upper and lower layers respectively. The strains of the upper geogrid were smaller than those of the lower geogrid. Smaller pile clear spacing reduced the geogrid deflection and the foundation settlement. Despite the change of the pile clear spacing, the progressive development of soil arching with the normalized displacement at the embankment base followed a similar trend without an obvious stress recovery stage.  相似文献   

17.
Piled embankments provide an economic solution to the problem of constructing embankments over soft soils. The piles and geosynthetic combination can alleviate the uneven surface settlements that sometimes occur in embankments supported by piles without reinforcement. The main focus of this paper is to present a new method for analysis of an embankment of granular fill on soft ground supported by a rectangular grid of piles and geosynthetic. This method is based on consideration of the arching effect in granular soil and similar to the method proposed by Low, B.K., Tang, S.K., Choa, V. [1994. Arching in piled embankments. Journal of Geotechnical Engineering 120 (11), 1917–1938]. The main refinements are: inclusion of a uniform surcharge load on the embankment fill, individual square caps were used, and taking into account the skin friction mechanism, which contributes to soil–geosynthetic interface resistance. Using this method, the influence of embankment height, soft ground depth, soft ground elastic modulus, and geosynthetic tensile stiffness on efficiency, stress concentration ratio, settlement ratio, tension of geosynthetic, and axial strain of geosynthetic are investigated. The results show that inclusion of a geosynthetic membrane can increase the fill load carried by piles. As a result, both the total and differential settlements of the embankment can be reduced. The new design method was verified against several current design methods. Theoretical solution showed that BS8006 [1995. Code of Practice for Strengthened/Reinforced Soils and other Fills. British Standards Institution, London, p. 162] and Guido, V.A., Kneuppel, J.D., Sweeny, M.A. [1987. Plate loading tests on geogrid-reinforced earth slabs. In: Proceedings of the Geosynthetics '87, New Orleans, USA, IFAI, pp. 216–225] methods overpredict the vertical stress acting on the geosynthetic due to that the reaction of the soft ground on the geosynthetic is not considered in their methods. It also showed that the present method is in good agreement with Low, B.K., Tang, S.K., Choa, V. [1994. Arching in piled embankments. Journal of Geotechnical Engineering 120 (11), 1917–1938] method.  相似文献   

18.
关于土工合成材料加筋设计的若干问题   总被引:2,自引:0,他引:2  
目前土工合成材料加筋技术被广泛应用,但人们对于加筋土中筋材与土间的相互作用的机理的认识还不够深入,因而在设计中总体上趋于保守。结合岩土工程的设计理论,指出土工合成材料在设计方法方面的不合理性;对于加筋挡土墙、加筋土坡、加筋软土地基上的土堤和桩网结构的设计分别进行了讨论;结合一些案例中的实测和预计的筋材应变和应力,进一步指出目前设计的保守性。最后指出,目前基于极限平衡法的设计不尽合理,而通过变形协调的筋土共同作用的研究,采用更能反映其相互作用机理的设计方法是非常必要的。  相似文献   

19.
介绍了桩承式加筋路堤足尺模型实验装置,该实验装置利用PVC材料水袋模拟桩间软土,从而在一定程度上能够控制桩土差异沉降。路堤填筑过程中测试了路堤内部土压力以及格栅拉力,并且重点分析了桩帽和桩间不同位置处土压力以及格栅拉力随填筑高度的变化规律。实验结果表明,路堤在填筑过程中发生了明显的土拱效应,路堤填筑完成后桩土应力比约为8.46,土拱高度约为1.125倍桩间净距;单向土工格栅能够进一步将桩间上方土压力传递到桩顶上方;随着路堤填筑高度的增加,格栅拉力增长并不大,路堤横向滑移引起的格栅拉力可以忽略不计。  相似文献   

20.
When permeable geosynthetic tubes are used for dewatering of waste sludge or construction of dikes or embankments, the tubes have to be inflated using sludge or soil slurry several times. After each inflation, the soil slurry is consolidated into solid. Hence from the second inflation onwards, the geosynthetic tube is filled by both slurry and consolidated soil. In this paper, a new analytical method is proposed to provide a solution to the above specific case. Friction between geosynthetic sheet and soil, and friction between geosynthetic tube and subgrade, are considered. Parametric studies are also carried out to compare the design between geosynthetic tubes inflated using pure slurry and that using slurry and consolidated soil to study the key factors affecting the design. The study shows that tensile forces vary along the cross-section of the geosynthetic tube with the minimum value occurring at the center of the base. The effect of friction and lateral earth pressure on the geometry and tensile forces of the geosynthetic tube is insignificant when the height of the consolidated soil in the tube is small, but increases considerably with an increase in the height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号