首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We reported a facile analysis and reduction of oxygen vacancy (VO??) in 0.7Bi(Fe1-xScx)O3-0.3BaTiO3 (0≤x≤0.08) ceramics. The leakage current mechanism was investigated intensively. Our results indicated that oxygen vacancies are the main cause for the high conductivity in BF-BT ceramics, and their concentration was quantitatively estimated from the Bi3+ content and the average oxidation state of iron. The VO?? concentration was effectively suppressed and the insulation resistance was enhanced by almost two orders of magnitude after doping 2%mol Sc3+. The enhanced insulation resistance contributed to excellent piezoelectric properties with d33 = 165 pC/N, TC = 505 °C, and kp = 26%. The proposed analysis method used to quantify the VO?? concentration provides valuable indications to reduce the leakage current density and improve the piezoelectric properties of BF-BT based ceramic.  相似文献   

4.
5.
《Ceramics International》2021,47(18):25229-25235
We report the single crystal growth and characterization of the quasi-one-dimensional superconductor Li0.9Mo6O17 via temperature-gradient flux method. The grown single crystals show a clear ab plane identified by the x-ray diffraction (XRD) pattern. Temperature dependent resistivities reveal a metallic to semiconducting crossover at TM = 24 K followed by a superconducting transition at Tc = 2.2 K for ρa and ρc. In addition, the upper critical fields demonstrate a large anisotropy with Hc2b>Hc2a>Hc2c both at ρa and ρc. Particularly, an upper critical field Hc2b of about 16.2 T at zero temperature limit was deduced from the field dependence of resistivity measurements, which is notably larger than the estimated Pauli paramagnetic limit 3.1 T and supports the existence of the spin-triplet superconducting pairing and unconventional superconductivity in Li0.9Mo6O17. The XRD, resistivities and upper critical field measurements all imply a high quality of the as-grown Li0.9Mo6O17 samples. Furthermore, the interlayer and in-plane magnetoresistivity (MR) up to 60 T reveal the possible phase transition driven by the density-wave gap suppression and Zeeman split effect in the high field state.  相似文献   

6.
7.
Following the 3Sn(IV)Sn(IV)×Co(II)Sn(IV)+2Ta(V)Sn(IV) charge compensation mechanism we optimized densification and electrical properties of Ta2O5-doped SnO2–CoO ceramics. We show that incorporation of acceptor dopant Co2+ in SnO2 is promoted after the addition of donor dopant like Ta5+, whereas any surplus of Co would form secondary Co2SnO4 phase. A balanced addition of both dopants is needed to promote densification, and any surplus of donor dopants that remain present at the grain boundaries retard the grain growth and deteriorate electrical properties. Varistor and dielectric properties are then strongly influenced by donor doping. Optimum varistor properties (α = 40, UT = 272 V/mm, IL = 1.2 μA) were measured for the sample with 1 mol% Ta2O5 and the best dielectric properties (ε = 6525; tan(δ) = 0.057@1kHz) were measured for the sample with 0.10 mol% Ta2O5 with the largest SnO2 grain sizes.  相似文献   

8.
9.
10.
Currently, there is an urgent need of extraordinary comprehensive pyroelectric materials for the wide application in detectors and energy harvesters. In this study, the (Pb1–1.5xLax)(Zr0.86Ti0.14)O3 (abbreviated as PLZT, x?=?0.02, 0.03, 0.04 and 0.05) ceramics located in ferroelectric-antiferroelectric (FE-AFE) phase boundary were designed and synthesized by using conventional solid-state reaction method. The microstructures, phase structures, dielectric, ferroelectric, thermal depolarization and pyroelectric properties of the PLZT ceramics with different La content were investigated thoroughly. The XRD results show that the PLZT ceramics change from FE phase to AFE phase with increasing La content. The significant improvement of pyroelectric coefficient p and figures of merit (FOMs) are achieved in the PLZT ceramics with the increase in La content because of the increased metastable ferroelectric phase under the application of electric field. The (Pb0.955La0.03)(Zr0.86Ti0.14)O3 (x?=?0.03) ceramic exhibits not only high p of 5.2×10?8C/cm2K and high depolarization temperature (Td) of 179?℃ but also excellent FOMs with Fi=2.2×10?10m/V, Fv=5.0×10?2m2/C, and Fd=3.47×10?5Pa?1/2. In addition, the highest p of 6.8×10?8C/cm2K is achieved in (Pb0.94La0.04)(Zr0.86Ti0.14)O3 (x?=?0.04) ceramic. These results demonstrate that the PLZT ceramics of x?=?0.03 and 0.04 are promising candidates for pyroelectric applications.  相似文献   

11.
12.
13.
14.
15.
16.
High temperature dielectrics based on (1-y)[(1-x)Bi0.5Na0.5TiO3-xBiAlO3]-yCaZrO3 (BNT-100xBA-100yCZ) ternary system were designed and prepared. The introduction of BiAlO3 is verified to create defect dipoles (AlTi'-VO??)?, which leads to the increase of the resistivity and decrease of dielectric loss in BNT-100xBA-100yCZ at high temperature. And the introduction of CaZrO3 is helpful to increase the temperature stability of permittivity, which is probably due to an inhomogeneous domain structure. The composition of x=0.09 and y=0.05 has a good overall dielectric properties, with permittivity value of 765 at 25 °C and 1263 at 200 °C, small variance of permittivity (Δε'/ε'200 °C ≤ ±15%) between 133 °C and 500 °C and low dielectric loss (tan ≤ 0.02) in the temperature range of 160 °C ?425 °C. Therefore, this system will be one of promising candidates of dielectrics used for high-temperature capacitors.  相似文献   

17.
《Ceramics International》2022,48(7):9407-9412
Ca1-xBaxMgSi2O6(x = 0–0.4) ceramics were prepared through a traditional solid-state reaction sintering route with various sintering temperatures. The effects of substituting Ba2+ for Ca2+, the relative density, phase composition, crystal morphology, and microwave dielectric properties of Ca1-xBaxMgSi2O6 (x = 0–0.4) ceramics were thoroughly studied. X-ray diffraction patterns indicate a single phase was formed in the samples when x ≤ 0.2, and the second phase BaMg2Si2O7 appeared at x = 0.4. As the amount of Ba2+ substitution increases, the Q×f value first increases and then decreases due to the combined effects of FWHM of peak v11 and atomic packing density, and the εr value was increased continuously which was closely corrected with the relative density and molecular polarization. The τf value improved slightly with the substituting Ba2+ for Ca2+. Typically, the Ca0.88Ba0.12MgSi2O6 ceramic can be well sintered at 1275 °C for 4 h with a maximum relative density of 99.3%, and possesses optimal microwave dielectric properties: εr=7.49, Q×f=64310 GHz, τf=-44.02 ppm/°C.  相似文献   

18.
Zn1?xErxO polycrystalline nanoparticles with various compositions (x=0.01,0.02,0.03,0.04,0.05, and 0.10)were prepared using sol–gel techniques, for which zinc acetate dihydrate and erbium 2–4 pentanedionate are used as precursors. Nanoparticles were pressed under a pressure of 4?tons for 5?min into disk-shaped compacts with 2?mm thicknesses and 10?mm diameters. The pressed samples were annealed at 400?°C for 30?min. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vickers microhardness analyses of the produced Er-doped ZnO bulk nanomaterials were performed. Specifically, in this study we focused on the analysis of their mechanical properties. Undoped and Er-doped bulk samples were investigated according to Meyer's law; the proportional sample resistance (PSR), elastic/plastic deformation (EPD), and indentation-induced cracking (IIC) models; and the Hays–Kendal (HK) approach. As a result, the IIC model was more suitable to determine the micromechanical properties and the reverse indentation size effect (RISE) behavior of Er-doped ZnO semiconductors.  相似文献   

19.
Ti3SiC2 is of interest due to its unique dual nature reminiscent of both brittle ceramics and ductile metals at ambient conditions. In this work, plate-impact experiments have been performed to study the dynamic behavior of Ti3SiC2 under shock compression up to 112 GPa by using laser velocity interferometer and electric pin techniques. Hugoniot elastic limits (HEL), spall strength, and Hugoniot equations of state have been obtained based on measured particle velocity profiles and shock wave velocities. The ratio of spall strength to HEL for Ti3SiC2 is larger than brittle ceramics but smaller than metals. This result indicates that the dual nature of Ti3SiC2 remains at least up to 10 GPa. On the other hand, the linearity of the Hugoniot equation of state, D=6.901(22)+1.153(53)up, suggests that the initial structure of Ti3SiC2 should be stable up to 112 GPa, in contrast to the result reported by Jordan et al. [J. Appl. Phys., 93 (2003) 9639].  相似文献   

20.
In this paper, we report the influence of Ni doping on the structural, electrical, magnetic and magnetoelectric properties of BaTiO3 (BTO) ceramics. X-ray diffraction (XRD) analysis indicates a phase transition from tetragonal to hexagonal at x?=?2.5?mol%. Further, XRD data has been refined using Rietveld method to extract the phase formation, lattice parameters, and the phase fraction of BaTi1-xNixO3 (BTNO)(0x10mol%) ceramics. The ferroelectric polarization decreases with Ni doping concentration. The relative permittivity of BTNO compositions decreases while the corresponding dielectric loss increases with Ni doping concentration. Room temperature magnetic hysteresis (M-H) loop of all BTNO samples exhibit ferromagnetic nature with a saturated loop except for x?=?2.5?mol% Ni doping concentration. At x?=?2.5?mol% Ni doping concentration, a small amount of diamagnetism is observed at higher fields along with ferromagnetism. The origin of ferromagnetism is due to the F- center exchange interaction via oxygen vacancies. The highest remnant magnetization (Mr) is 11.76 memu/g for x?=?10?mol%. The Magnetodielectric coefficient (MD) and magnetoelectric coefficient (ME) gradually increases with increasing Ni doping concentration, and are 1.72% and 4.51 mVcm?1Oe?1 respectively for x?=?10?mol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号