首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel freeze-casting method is used to fabricate aligned lamellar porous alumina with a centrosymmetric structure from aqueous alumina slurries. Two cold fronts oriented perpendicularly to each other, originating from the bottom and side of the cylindrical copper mold, induce the growth of ice crystals in specific directions along the radius of the cylindrical mold. Lamellar channels of porous alumina are arranged centrosymmetrically along the radial axis. The pore distribution of the currently prepared porous ceramics is more regular when compared with that of porous ceramics prepared by conventional freeze casting. This affords porous ceramics with improved mechanical properties and stability. The current method addresses the issue of partial failure as induced by the randomly distributed channels in lamellar porous ceramics.  相似文献   

2.
Highly structure-controlled B4C ceramics were prepared via strong magnetic field-assisted slip casting of a slurry, containing B4C base particles and pore-forming agents with a fiber shape. To achieve gas release at a lower porosity for maintaining its mechanical strength, these B4C ceramics had a structure in which a large number of oriented tubal pores were dispersed in a crystallographically-aligned and dense B4C matrix phase. The B4C microstructure, such as structuration and orientation degree distributions of the B4C grains and tubal pores, was characterized by SEM observation, EBSD analysis, and X-ray CT. Among the investigations, it was found that the oxidic impurities, as an inhibitor of sintering, which existed on the B4C surface, can be removed by ethylation and azeotropy due to an ethanol treatment followed by vacuum drying. Thus, an ethanol treatment of a green compact before sintering was significantly effective for the fabrication of the B4C ceramics, including the microstructure that coexisted with a dense matrix phase with tubal pores. The resultant ceramic specimens showed the remarkable three-point bending strength of 459?554 MPa, which is two times higher when compared to conventional B4C pellets with a similar porosity.  相似文献   

3.
A new route based on the combination of saponification/gelation/freeze-casting processes, in which the water was used as the solvent, was proposed to produce highly porous ceramics with isometric pores. The saponification reaction using gelatin promoted an inter-connected and equiaxial pore structure with the absence of lamellar pores, even using water as a solvent. The final porosity was up to ∼95 %, and the average pore size ranged from ≈200 up to 500 μm. The amount of saponifying agent had a significant influence on the pore size, while the contents of solids had a more substantial effect on the open porosity. The results indicate that the in situ production of surfactant combined with freeze casting technique allows obtaining ceramics with high porosity and isometric pores even using water as a solvent.  相似文献   

4.
The effects of the annealing methods and annealing temperatures on the pore structures and mechanical properties of porous alumina were investigated. The amorphisation behavior and solidification behavior of the sucrose solutions during annealing were discussed. The pore morphology of porous alumina changed noticeably after uniform annealing. As annealing temperature increased from ?25 ℃ to ?5 ℃, the pore morphology of porous alumina changed gradually from irregular lamellar channels to circular channels. After directional annealing, the pore morphology of porous alumina was similar to that after uniform annealing; however, the uniformity of pore channels and the density of pore walls were increased. During directional annealing at ?15℃, the compressive strength of porous alumina reached 58.8?MPa, which was 35% higher than that of unannealed porous alumina.  相似文献   

5.
The electrical, thermal, and mechanical properties of porous SiC ceramics with B4C-C additives were investigated as functions of C content and sintering temperature. The electrical resistivity of porous SiC ceramics decreased with increases in C content and sintering temperature. A minimal electrical resistivity of 4.6 × 10?2 Ω·cm was obtained in porous SiC ceramics with 1 wt% B4C and 10 wt% C. The thermal conductivity and flexural strength increased with increasing sintering temperature and showed maxima at 4 wt% C addition when sintered at 2000 °C and 2100 °C. The thermal conductivity and flexural strength of porous SiC ceramics can be tuned independently from the porosity by controlling C content and sintering temperature. Typical electrical resistivity, thermal conductivity, and flexural strength of porous SiC ceramics with 1 wt% B4C-4 wt% C sintered at 2100 °C were 1.3 × 10?1 Ω·cm, 76.0 W/(m·K), and 110.3 MPa, respectively.  相似文献   

6.
The fabrication of B4C ultrafiltration membranes is described. Firstly, a semi-dilute B4C slurry was environmentally-friendly prepared by aqueous colloidal processing, optimizing its dispersion by sonication, and used to deposit B4C membranes onto SiC macro-porous supports by dip-coating. Secondly, the resulting green membranes were characterised microstructurally by scanning electron microscopy (SEM), and pressureless sintered within the intermediate sintering regime. Thirdly, the sintered membranes were calcined in air to clean them from possible free carbon in the smallest pores, with the optimal calcination conditions having been identified by thermogravimetry coupled with mass spectrometry. Next, the calcined, sintered membranes were characterised microstructurally by SEM, tested mechanically against scratching, and characterised texturally by capillary flow porometry, thus identifying the optimal among them. Lastly, as a complement to the fabrication study, the filtration permeability of the optimal membrane was evaluated using deionized water. This work thus paves the way towards the fabrication of ceramic membranes based on B4C, lighter and potentially more durable than others, for filtration applications.  相似文献   

7.
Ordered porous MgO films with pore diameters in the 15–28 nm range have been prepared on porous anodic alumina substrates at 573 K in a fixed O2 pressure of 1.4 × 10−4 mbar using DC-reactive magnetron sputtering. X-ray diffraction and scanning probe microscope observations have revealed that homogeneous MgO ceramics with face-centered cubic structure are formed with a highly ordered nanopore array arranged in a close packed hexagonal pattern. The results of magnetic measurements have shown that the porous MgO ceramics possess remarkable room temperature ferromagnetism and the maximum saturation magnetization along the out-of-plane direction was as high as 78 emu/cm3. Experimental and theoretical results suggest that oxygen vacancies and the unique porous structure of the films are responsible for the high magnetization. These results provide new insights into magnetic ordering in undoped dilute ferromagnetic semiconductor oxides and may be useful in the development of MgO-based spintronics devices and novel multifunctional materials.  相似文献   

8.
9.
《Ceramics International》2020,46(4):4581-4586
Porous ceramics with high porosity and low bulk density were prepared by using nickel slag and metakaolin as the primary raw materials, glass powder as flux, and SiC as the foaming agent. The content of nickel slag and foaming agent had a significant effect on the bulk density, porosity, and flexural strength of the porous ceramics. The porous ceramics with the best properties were obtained at 1100 °C for 30 min with 50 wt% nickel slag, 40 wt% metakaolin, 10 wt% waste glass, and 0.8 wt% SiC. It had a low bulk density (as low as 245 kg/m3), high flexural strength and compressive strength (0.6 MPa and 1.17 MPa, respectively), and high porosity (about 89.8%). The nickel slag was magnetically separated as well. The density of nickel slag powder could be reduced via magnetic separation, and there was no significant change in the crystal structure of the raw material. Compared with porous ceramics prepared using nickel slag without magnetic separation, ceramics subjected to magnetic separation had lower bulk density, higher porosity, and the same phase composition. This study can be used as an indicator for the application of nickel slag in porous ceramics, which is of great significance in providing a great substitute nickel slag towards recovery and utilization.  相似文献   

10.
Porous Si3N4 ceramics with unidirectionally aligned channels were prepared via freezing ceramics suspension with distinct solid contents under different freezing temperatures. The samples obtained using lower solid content in ceramic suspension at higher freezing temperature exhibit larger Darcian and non-Darcian constants due to their higher open porosity, larger pore size and lower tortuosity. Moreover the investigation on individual contributions of viscous energy losses and inertial energy losses on the total pressure drop during permeation process indicates that with decreasing the solid content or the freezing temperature the viscous energy losses increase but the inertial energy losses decrease for samples owing to the differences in their pore structures. It is worth mentioning that porous Si3N4 ceramics with unidirectionally aligned channels exhibit larger Darcian and non-Darcian constants than those with similar pore size distributions and open porosity owing to their lower tortuosity, thus rendering them appropriate for filters and membrane supports.  相似文献   

11.
泡沫陶瓷的研究进展   总被引:12,自引:0,他引:12  
介绍了泡沫陶瓷的特性、制造工艺、用途及在冶金工业中的应用。指出除现有的堇青石质、氧化铝质、堇青石-氧化铝质过滤器外,还开发了氮化硅质、碳化硅质、氧化铝质产品。  相似文献   

12.
《Ceramics International》2017,43(15):11759-11765
In this article we assess and compare the complex mechanical behavior of two complex microstructure ceramics material formed within the reaction sintering frameworkTwo comparable pairs of materials with respectively similar microstructures were obtained by reaction sintering from boric acid and alumina. Two single phase porous ceramics were compared with two composite (1:1) porous ceramic. The first and second phases were aluminum borate needles (Al18B4O33) and alumina (Al2O3).The four with comparable grain size and analogous apparent porosities: in diameter (≈ 0.7 µm) and in volume fraction (≈ 45%). The mechanical behavior was studied by means of the diametral compression test at low displacement rate and explained in terms of the texture, microstructure features evaluated by mercury intrusion porosimetry and scanning electron microscopy.Single Al18B4O33 phase porous materials presented higher mechanical strengths than the composite materials. Within the respective microstructural configurations the whisker thickness did not affect significantly the mechanical behavior and parameters. A well-defined fragile behavior was observed and described in the composite material. On the other hand the single Al18B4O33 needle porous material presented a distinctive behavior with local discontinuities without loss of integrity in the diametral stress behavior, and achieved strength up to 50% higher than the corresponding composite.  相似文献   

13.
The purpose of this paper is to study the characteristics of the combined convection heat transfer and a micropolar nanofluid flow passing through an impermeable stretching sheet in a porous medium. The nanofluid flow field is affected by a magnetic field perpendicular to the sheet. The dynamic viscosity of the micropolar nanofluid changes under the influence of the magnetic field. The continuity, linear momentum, angular momentum, and energy equations are first simplified using the order of magnitude technique that, along with the applied boundary conditions and the definition of the appropriate parameters, are transferred to the similarity space using the similarity analysis. Then the resulting equations are solved using the Runge–Kutta method.The distinction of the macroscale and microscale flow fields and temperature fields resulting from different nanoparticle shapes was clarified. Increasing the Hartmann number, the vortex viscosity parameter, the magnetic parameter, the nanoparticle volume fraction, and the permeability parameter of the porous media increased the surface friction on the sheet. Increasing the vortex viscosity parameter, the magnetic parameter, and the volume fraction of the nanoparticles increases the Nusselt number.  相似文献   

14.
Hierarchically pore-structured porous diatomite ceramics containing 82.9∼84.5% porosity were successfully prepared for the first time via foam-gelcasting using diatomite powder as the main raw material. Sizes of mesopores derived from the raw material and macropores formed mainly from foaming were 0.02∼0.1 μm and 109.7∼130.5 μm, respectively. The effect of sintering temperature, additive content and solid loading of slurry on pore size and distribution, and mechanical and thermal properties of as-prepared porous ceramics were investigated. Compressive strength of as-prepared porous ceramics increased with sintering temperature, and the one containing 82.9% porosity showed the highest compressive strength of 2.1 ± 0.14 MPa. In addition, the one containing 84.5% porosity and having compressive strength of 1.1 ± 0.07 MPa showed the lowest thermal conductivity of 0.097 ± 0.001 W/(m·K) at a test temperature of 200 ̊C, suggesting that as-prepared porous ceramics could be potentially used as good thermal insulation materials.  相似文献   

15.
《Ceramics International》2023,49(20):33247-33254
In this study, a series of porous ceramics were prepared using different ratios of small and large size MA hollow ceramic spheres as pore-forming agents, and their thermal insulation properties were investigated. The results showed that increasing the proportion of small size hollow ceramic spheres could effectively decrease the thermal conductivity and improve the compressive strength of the porous ceramics. The optimal porous ceramic was prepared with a ratio of 10∼50 of small and large size hollow ceramic spheres, which had a thermal conductivity of 0.368 W/(m·K) at 800 °C and a compressive strength of 22.43 MPa. Microscopic analysis indicated that the enhanced thermal insulation and mechanical properties were due to the improved pore structure and the enhanced bonding strength between the ceramic spheres and the matrix. The findings provide valuable insights for the development of high-performance thermal insulation materials.  相似文献   

16.
《Ceramics International》2017,43(17):14593-14598
During freeze casting of TiO2 porous ceramics, the porous architecture is strongly influenced by TiO2 particle size, solids loading, and cooling temperature. This work investigates the influences of particle size, freezing substrate, and cooling temperature on the TiO2 green bodies prepared by freeze casting. The results show that the lamellar channel width with 100 nm particles is larger than that of 25 nm particles, yet the ceramic wall thickness is noticeably decreased. The lamellar structure is more ordered when using a copper sheet than glass as its freezing substrate. A finer microstructure results when frozen at − 50 ℃ than − 30 ℃. Such porous materials have application potentials in a wide range of areas such as photocatalysis, solar cells, and pollutant removal and should be further studied.  相似文献   

17.
How to improve the strength of fibrous porous ceramics dramatically under the premise of no sacrificing its low density and thermal conductivity has remained a challenge in the high-temperature thermal insulation field. In this paper, a new kind of high-strength mullite fiber-based ceramics composed of interlocked porous mullite fibers was prepared by nanoemulsion electrospinning and dry pressing method. Results show that as to the porous ceramics with the same density (~ 0.8 g/cm3), the three-dimensional skeleton structure composed of porous mullite fibers was much denser than that composed of solid mullite fibers. Therefore, porous mullite fiber-based ceramics exhibited a higher compressive strength (5.53 MPa) than that of solid mullite fiber-based ceramics (3.21 MPa). In addition, porous mullite fiber-based ceramics exhibited a superior high-temperature heat insulation property because the porous structure in fibers could reduce the radiant heat conduction. This work provides new insight into the development of high-temperature thermal insulators.  相似文献   

18.
19.
Si3N4 porous ceramics with improved mechanical strength were fabricated for the first time by a combined foam-gelcasting and microwave-nitridation method at 1273–1373?K. The Si3N4 porous samples prepared at 1373?K/20?min with the porosity of 68.9% had respectively flexural and compressive strength as high as 8.1 and 20.8?MPa, which values were comparable or even superior to those of Si3N4 porous ceramics prepared previously by the conventional heating technique at a much higher temperature of 1773–1973?K, indicating that present preparation strategy is feasible to prepare high quality Si3N4 porous ceramic at a much milder condition. Moreover, the thermal conductivity of as-prepared Si3N4 porous ceramics at 1073?K was as low as 1.697?W/(m?K), suggesting it could be a potentially good heat insulating material for aluminum electrolyte cells.  相似文献   

20.
《Ceramics International》2023,49(19):31210-31217
Herein, a pohotosentive polysiloxane (PSO)/talc/Al2O3 slurry was prepared for the digital light processing printing. Liquid photosensitive PSO was exploited as a triple-functioned material, acting both as the resin matrix, a high reactive Si source and a pore generator. Through adjusting the raw material components, polysiloxane can be sintered with talc and Al2O3 fillers after being pyrolyzed to 1200 oC while pores with variable diameters can be generated. Ternary component slurry prepared based on the above strategy possesses the characteristics of low viscosity, high reaction activity and good homogeneity. Sintering schedule of the printed thin-walled precursor was investigated to guarantee the morphology of cordierite product was consistent with the printed model. This work aims to provide a new strategy for DLP printing of MgO-Al2O3-SiO2 ternary and other polymer derived ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号