首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
《Ceramics International》2016,42(11):12537-12542
The energy-storage performance and dielectric properties of tape-cast (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 (PBLZST) antiferroelectric (AFE) thick films with different thicknesses were systematically studied. As the thickness of the thick films increased from 40 to 80 µm, the dielectric constant and saturation polarization (Ps) of the thick films were gradually increased, while their corresponding breakdown strength (BDS) was decreased. A maximum recoverable energy-storage density of 6.8 J/cm3, companied by an efficiency of 61.2%, was achieved in the PBLZST AFE thick film with a thickness of 40 µm at room temperature. Moreover, the energy density of the PBLZST AFE thick films also displayed good thermal stability over 25–200 °C. In addition, all the samples had a low leakage current density of ~10−6 A/cm2 at room temperature. These findings demonstrated that the PBLZST thick films should be a promising candidate for applications in high energy-storage capacitors.  相似文献   

2.
Energy storage capacitors with high recoverable energy density and efficiency are greatly desired in pulse power system. In this study, the energy density and efficiency were enhanced in Mn-modified (Pb0.93Ba0.04La0.02)(Zr0.65Sn0.3Ti0.05)O3 antiferroelectric ceramics via a conventional solid-state reaction process. The improvement was attributed to the change in the antiferroelectric-to-ferroelectric phase transition electric field (EF) and the ferroelectric-to-antiferroelectric phase transition electric field (EA) with a small Mn addition. Mn ions as acceptors, which gave rise to the structure variation, significantly influenced the microstructures, dielectric properties and energy storage performance of the antiferroelectric ceramics. A maximum recoverable energy density of 2.64 J/cm3 with an efficiency of 73% was achieved when x = 0.005, which was 40% higher than that (1.84 J/cm3, 68%) of the pure ceramic counterparts. The results demonstrate that the acceptor modification is an effective way to improve the energy storage density and efficiency of antiferroelectric ceramics by inducing a structure variation and the (Pb0.93Ba0.04La0.02)(Zr0.65Sn0.3Ti0.05)O3-xMn2O3 antiferroelectric ceramics are a promising energy storage material with high-power density.  相似文献   

3.
(Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 (PBLZST) antiferroelectric (AFE) ceramics have been prepared by hot‐press sintering method and conventional solid‐state reaction process, and the dependence of microstructure and energy storage properties of the ceramics on sintering approaches has been studied. The results reveal that not only the microstructure, but also the electrical properties of the PBLZST AFE ceramics are significantly improved by using the hot‐press sintering method. Samples resulting from the hot‐press sintering process have high breakdown strength of 180 kV/cm which results from the increase of density. Coupled with large polarization, the hot‐pressed AFE ceramics are shown to have a high recoverable energy density of 3.2 J/cm3. The recoverable energy density of the hot‐pressed PBLZST AFE ceramics is 100% greater than the conventional sintered specimens with recoverable energy density of 1.6 J/cm3.  相似文献   

4.
Featured with high polarization and large electric field-induced phase transition, PbZrO3-based antiferroelectric (AFE) materials are regarded as prospective candidates for energy-storage applications. However, systematical studies on PbZrO3-based materials are insufficient because of their complex chemical compositions and various phase structures. In this work, (Pb0.94La0.04)(Zr1-x-ySnxTiy)O3 (abbreviated as PLZST, 0 ≤ x ≤ 0.5, 0.01 ≤ y ≤ 0.1) AFE system was selected and the energy-storage behavior was regulated. It is found that low Ti content benefits to obtain satisfactory electric breakdown strength, realizing high energy-storage density. With Sn content increasing, the electric hysteresis decreases gradually, which is beneficial to improve energy conversion efficiency. As a result, a large recoverable energy-storage density of 9.6 J/cm3 and a high energy conversion efficiency of 90.2% were achieved in (Pb0.94La0.04)(Zr0.49Sn0.5Ti0.01)O3 ceramic. This work reveals energy-storage behavior of PLZST AFE materials systematically, providing reference for performance tailoring and new material designing in energy-storage applications.  相似文献   

5.
《Ceramics International》2021,47(20):28493-28499
Lead-free antiferroelectric (AFE) NaNbO3 (NN) is one of promising materials for dielectric capacitors, but the recoverable energy-storage density and efficiency get restrained owing to huge remanent polarization and limited dielectric breakdown field strength. In this work, a variety of NN based lead-free bulk (1-x)NaNbO3-xLa(Mn0.5Ni0.5)O3 (abbreviated as (1-x)NN-xLMN, x = 0, 0.05, 0.10, 0.15, 0.20) ceramics were designed using a solid-state synthesis method. Remarkably, an ultra-fast charge-discharge speed 47 ns and an acceptable recoverable energy-storage density Wrec ~1.77 J/cm3 with a high efficiency η = 77% were obtained under the Eb of 200 kV/cm at x = 0.05. The superior energy storage performance is attributed to the regulation of domain size and voltage resistance by special ions substitution of A and B sites. This work not only proposes an efficient strategy to realize high recoverable energy-storage density and efficiency, but also provide an candidate material for application of advanced pulsed power capacitors.  相似文献   

6.
(Pb0.87Ba0.1La0.02) (Zr0.65Sn0.3Ti0.05)O3+x mol% Y (PBLZST-x, x=0–1.25) anti-ferroelectric (AFE) ceramics have been prepared by the solid-state reaction process, and the effect of Y-doping on the microstructure and electrical properties has been investigated. When the Y content increases from 0 mol% to 1.25 mol%, the average grain size of the PBLZST ceramics decreases by more than 3 times (from 4.7 μm to 1.5 μm). The doping and grain size co-effects lead to a significant increase in the AFE-to-FE and FE-to-AFE phase transition electric field (EF and EA), and result in a decrease in the width of the double hysteresis loops. As the Y content increases from 0 mol% to 0.75 mol%, the EF increases from 53 KV/cm to 83 KV/cm and the EA increases from 35 KV/cm to 72 KV/cm. The large recoverable energy density of 2.75 J/cm3 and the high energy efficiency of 71.5% can be achieved when 0.75 mol% Y is doped. The results indicate that Y-doping is an effective method to modulate the average grain size and improve the energy storage performance of the PBLZST anti-ferroelectric ceramics.  相似文献   

7.
Lead lanthanum zirconate stannate titanate (PbLa(ZrSnTi)O3) antiferroelectric (AFE) ceramics are widely used in dielectric capacitors due to their superior energy-storage capacity. Generally, these ceramics can be synthesized by solid-state reaction and sol-gel methods. Ceramics prepared using the sol-gel method have a purer phase than those prepared using the solid-state reaction method because the sol-gel method can avoid the segregation of Sn. However, because the commonly used raw material tin acetate is very expensive, the preparation of PbLa(ZrSnTi)O3 AFE ceramics via the sol-gel method is not cost-effective, which prevents the use of sol-gel method for manufacturing PbLa(ZrSnTi)O3 in a large scale. In this work, low-cost dibutyltin oxide instead of expensive tin acetate is used to synthesize Pb0.97La0.02(Zr0.50Sn0.45Ti0.05)O3 (PLZST) nanopowders, and single-phase powders with a perovskite structure and average grain size of 200 nm are obtained at a calcination temperature of 580°C. In addition, dense PLZST AFE ceramics with a pure perovskite structure are obtained by sintering the PLZST nanopowders at temperatures as low as 1100°C. The sintered PLZST ceramics exhibit a room-temperature recoverable energy-storage density as high as 1.93 J/cm3 with an efficiency of 75%, which varies only slightly in the temperature range of 20-120°C. The high energy-storage density (>1.9 J/cm3) over a wide temperature range illustrates that the sol-gel-derived PLZST ceramics with low-cost dibutyltin oxide are quite promising for manufacturing pulse power capacitors.  相似文献   

8.
《Ceramics International》2023,49(19):31711-31717
Due to the high demand for dielectric materials with high energy density, the energy storage performance of antiferroelectric ceramic capacitors has always gained much attention. Polarization intensity is a key factor that is closely related to the energy storage density. However, thus far, there has been a lack of research studies or successful methods to effectively modulate polarization intensity. The behavior of the polarization process is complex and contains domain nucleation, growth, and flip-flapping. Based on this finding, the introduction of Nb5+ at the B-site was designed to influence the three stages of antiferroelectric polarization by regulating the balance between the ferroelectric and antiferroelectric phases, and eventually realized regulation of the saturation polarization intensity in the (Pb1-1.5xLax)(Zr0.5Sn0.43Ti0.07)O3 antiferroelectric ceramics. The saturation polarization intensity has increased from 25.56 to 42 μC/cm2 with Nb5+ content increases from 0 to 4 mol% and the hysteresis was kept low, Pb0.94La0.04(Zr0.65Sn0.35)0.975Nb0.02O3 is the optimal component with a high releasable energy density of 8.26 J/cm3 and an energy storage efficiency of 90.31%. This work provides an in-depth explanation of the microscopic mechanism of antiferroelectric ceramic polarization and presents a novel approach for the composition design of high-energy storage density antiferroelectric ceramics.  相似文献   

9.
Relaxor ferroelectric (FE) materials have received increasing attention owing to their great potentials for energy-storage applications, especially for the ones with high energy-storage density, efficiency and thermal stability simultaneously. A novel lead-free [(Na0.5K0.5)0.97-xLi0.03](Nb0.94-xSb0.06)O3-xBi(Zn1/2Zr1/2)O3 (NKLNS-xBZZ) ceramics was developed by a solid-state reaction method. The addition of BZZ has induced obvious dielectric relaxation behavior, as well as improved thermal stability of dielectric response. Furthermore, 0.4 wt.% La2O3 was added into the NKLNS-0.06BZZ ceramic, leading to an increased breakdown strength as a result of the reduction of grain size, improvement of bulk resistivity and decrease of dielectric loss. A large recoverable energy-storage density (∼4.85 J/cm3) and a high efficiency (∼88.2 %) as well as an excellent thermal stability (±12 %, 25–140 °C) were simultaneously obtained, together with a fast discharge rate (t0.9∼112 ns). These results suggest that La2O3 doped NKLNS-0.06BZZ ceramic could become an attractive dielectric material for temperature-stable energy-storage capacitors.  相似文献   

10.
《Ceramics International》2023,49(20):33057-33072
The temperature stability and temperature stability range of barium titanate-based pulse energy-storage ceramics were modified by Bi2O3 tailoring in (Ba0.98-xLi0.02Bix) (Mg0·04Ti0.96)O3 (x = 0, 0.025, 0.05, 0.075, 0.1) and (Ba1.03-1.5xLi0.02Bix) (Mg0·04Ti0.96)O3 (x = 0.125, 0.15, 0.2, 0.25) ceramics. Excellent pulse energy-storage performances of ceramic films are achieved via the new dual priority strategy of establishing cationic vacancies and forming a liquid phase. The dielectric constant plateau appears due to the cubic phase and space charges. Outstanding temperature stability, frequency stability and antifatigue performance are obtained in the ceramics, and their variations are all less than 15%. The comprehensive energy-storage properties with dual priority parameters of energy-storage density and efficiency of 3.13 J/cm3 and 91.71%, accompanied by an excellent pulse discharge energy density of 2.48 J/cm3, current density of 1313.23 A/cm2 and power density of 195.26 MW/cm3 are gained at x = 0.1. The perfect pulse energy-storage performances as well as ultrahigh stability are correlated with synergistic effects of multiphase coexistence, cubic phase, liquid-phase sintering, grain size, ceramic resistance, space charges and polar nanoregions. The comprehensive parameters indicate that the (Ba0·88Li0·02Bi0.1) (Mg0·04Ti0.96)O3 ceramics have potential application in high precision fields.  相似文献   

11.
Novel lead-free [(Bi0.5Na0.5)0.94Ba0.06]0.97La0.03Ti1-x(Al0.5Nb0.5)xO3 ceramics (BNBLT-xAN) were prepared by the conventional solid state sintering method. The dielectric, ferroelectric, ac impedance and energy-storage performance were systematically investigated. Temperature dependent permittivity curves showed that relaxation properties of sintered ceramics gradually diminished with the increase of AN. The introduction of AN gave rise to a slimmer polarization hysteresis loop (P-E) and an enhanced dielectric breakdown strength (DBS). Therefore, the optimum energy-storage performance were realized at x?=?0.05 with the energy-storage density (Wrec) of 1.72?J/cm3 and energy-storage efficiency (η) of 85.6% at 105?kV/cm, accompanied with the excellent temperature stability and fatigue performance. The results demonstrated that BNBLT-xAN system was a promising lead-free candidate for energy-storage applications.  相似文献   

12.
The polarization hysteresis loops and the dynamics of domain switching in ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT), antiferroelectric PbZrO3 (PZ) and relaxor-ferroelectric Pb0.9La0.1(Zr0.52Ti0.48)O3 (PLZT) thin films deposited on Pt/Ti/SiO2/Si substrates were investigated under various bipolar electric fields during repetitive switching cycles. Fatigue behavior was observed in PZT thin films and was accelerated at higher bipolar electric fields. Degradation of energy storage performance observed in PZ thin films corresponds to the appearance of a ferroelectric state just under a high bipolar electric field, which could be related to the nonuniform strain buildup in some regions within bulk PZ. Meanwhile, PLZT thin films demonstrated fatigue-free in both polarization and energy storage performance and independent bipolar electric fields, which are probably related to the highly dynamic polar nanodomains. More importantly, PLZT thin films also exhibited excellent recoverable energy-storage density and energy efficiency, extracted from the polarization hysteresis loops, making them promising dielectric capacitors for energy-storage applications.  相似文献   

13.
《Ceramics International》2022,48(11):15711-15720
Dielectric materials with a high recoverable energy-storage density (Wrec) and an enhanced power density are required for downsizing pulsed power electronic devices. Dielectrics with a low but temperature-stable permittivity are better suited as energy-storage materials for power devices owing to their delayed saturation polarization response. ABO3 perovskite-structured (Bi0.5Na0.5)TiO3-based [(Bi0.5Na0.5)0.93Ca0.07](Ti0.85Zr0.15)O3 (BCZ) lead-free ceramics exhibit good dielectric temperature stability and are being investigated as viable materials for energy-storage devices. However, these materials only produced limited Wrec due to the reduced breakdown strength (BDS). Herein, various advanced engineering techniques, including glass doping and the viscous polymer rolling process, were applied to the BCZ to substantially enhance the BDS of the ceramics. Our results show that the BCZ-0.75 wt% glass-additive composition achieved an ultrahigh Wrec of 7.78 J/cm3 under a comparatively low electric field and remained above 4.6 J/cm3 in the temperature range of 30 °C–160 °C. This work demonstrates that the BCZ is a viable competitor for lead-free dielectrics and guides for the development of novel high-performance dielectric materials for future pulsed power devices.  相似文献   

14.
The orthorhombic phase Pb0.97La0.02(Zr0.93Sn0.05Ti0.02)O3 (PLZST) and the tetragonal phase (Pb0.93Ba0.04La0.02)(Zr0.65Sn0.3Ti0.05)O3 (PBLZST) were composited by the conventional solid state method to acquire high energy storage density and high thermal stability. X-ray diffraction spectra revealed the coexistence of orthorhombic and tetragonal structure, indicating that the ceramics were successfully composited. The component ratio of PLZST/PBLZST significantly influenced the thermal stability as well as the energy storage density due to the opposite energy storage performance-temperature trend of PLZST and PBLZST. The phase composition, microstructure and electric properties were discussed to explain the performance in the ceramic composites. High energy storage density of 3.20?±?0.02?J/cm3 at 20?°C with a variation <15% over a temperature range from 20?°C to 150?°C were found in the ceramic composite with a PLZST/PBLZST ratio of 55:45. This work provide an effective method to broaden applications of energy storage ceramics in high temperature.  相似文献   

15.
Enhancing the efficiency in energy storage capacitors minimizes energy dissipation and improves device durability. A new efficiency-enhancement strategy for antiferroelectric ceramics, imposing relaxor characteristics through forming solid solutions with relaxor compounds, is demonstrated in the present work. Using the classic antiferroelectric (Pb0.97La0.02)(Zr1-x-ySnxTiy)O3 as model base compositions, Bi(Zn2/3Nb1/3)O3 is found to be most effective in producing the “relaxor antiferroelectric” behavior and minimizing the electric hysteresis. Specifically, a remarkable energy storage efficiency of 95.6% (with an energy density of 2.19 J/cm3 at 115 kV/cm) is achieved in the solid solution 0.90(Pb0.97La0.02)(Zr0.65Sn0.30Ti0.05)O3–0.10Bi(Zn2/3Nb1/3)O3. The validated new strategy, hence, can guide the design of future relaxor antiferroelectric dielectrics for next generation energy storage capacitors.  相似文献   

16.
《Ceramics International》2019,45(13):15898-15905
Recently, the (Pb,La)(Zr,Ti)O3 antiferroelectric materials with slim-and-slanted double hysteresis loops have been widely drawn in the application of advanced pulsed power capacitors due to its low strain characteristic. In this work, the energy storage properties of (Pb0.895La0.07)(ZrxTi1-x)O3 ceramics with different Zr contents are researched thoroughly because the substitution of Ti4+ by Zr4+ can reduce the tolerance factor t, enhancing the antiferroelectricity. The polarization-electric field hysteresis loops of the PLZT ceramics become slimmer with increasing Zr content. The highest recoverable energy storage density (Wre) of 3.38 J/cm3 and ultrahigh energy efficiency (η) of 86.5% are achieved in (Pb0.895La0.07)(Zr0.9Ti0.1)O3 ceramic. The (Pb0.895La0.07)(Zr0.9Ti0.1)O3 ceramic also hold fairly thermal stability (relative variation of Wre is less than 28% over 30 °C-120 °C), excellent frequency stability (10–1000 Hz) and good fatigue endurance. These results demonstrate that the (Pb0.895La0.07)(Zr0.9Ti0.1)O3 ceramic can be a desirable material for dielectric energy storage capacitors, especially for pulse power technology.  相似文献   

17.
(Pb0.97Ba0.02)Nb0.02(Zr0.55Sn0.45?xTix)0.98O3 (PBNZST, 0.03≤x≤0.06) ceramics were prepared by conventional solid state synthesis and their crystal structure, ferroelectric, dielectric, and electric field-induced strain properties were systemically investigated. A transformation from antiferroelectric (AFE) phase to ferroelectric (FE) phase was observed at 0.05<x<0.06. Besides, with the increase of Ti content, the electric field-induced strain decreased, due to the larger strain of AFE ceramics compared to FE ceramics. Further, when the measuring frequency decreased, the strain improved, because the electric field at low frequency allows a more efficient switching of domains, resulting in larger strain. The maximum strain of 0.55% was obtained in (Pb0.97Ba0.02)Nb0.02(Zr0.55Sn0.45?xTix)0.98O3 antiferroelectric ceramics with x=0.03 at 2 Hz.  相似文献   

18.
《Ceramics International》2016,42(15):16439-16447
(100)-oriented Pb(0.90−x)BaxLa0.10Zr0.90Ti0.10O3 (x=0, 0.02, 0.05 and 0.11) antiferroelectric thick films were deposited on LaNiO3/Si (100) substrates by the sol-gel process. The influences of Ba2+ content on the dielectric properties, electrocaloric effect (ECE), energy-storage performance and leakage current were systematically investigated. With Ba2+ content increasing, the temperature (Tm) corresponding to the maximum dielectric constant of the thick films was decreased, while their diffuseness was increased. The maximum ECE ∆T=18.1 °C was obtained in the thick film with x=0.05 at room temperature under ∆E=700 kV/cm. The maximum energy storage density of 42.3 J/cm3 and the corresponding efficiency of 68% was achieved in the film with x=0.11, companied by a power density of 0.53 MW/cm3, due to its high breakdown strength. In addition, a small leakage current density (<10−5 A/cm2) were attained in these films at room temperature. In conclusion, we believe that this kind of antiferroelctric thick film is a potential candidate for applications in solid cooling devices and the energy-storage systems.  相似文献   

19.
Dielectric ceramics with both excellent energy storage and optical transmittance have attracted much attention in recent years. However, the transparent Pb-free energy-storage ceramics were rare reported. In this work, we prepared transparent relaxor ferroelectric ceramics (1 − x)Bi0.5Na0.5TiO3xNaNbO3 (BNT–xNN) by conventional solid-state reaction method. We find the NN-doping can enhance the polarization and breakdown strength of BNT by suppressing the grain growth and restrained the reduction of Ti4+ to Ti3+. As a result, a high recoverable energy-storage density of 5.14 J/cm3 and its energy efficiency of 79.65% are achieved in BNT–0.5NN ceramic at 286 kV/cm. Furthermore, NN-doping can promote the densification to improve the optical transmittance of BNT, rising from ∼26% (x = 0.2) to ∼32% (x = 0.5) in the visible light region. These characteristics demonstrate the potential application of BNT–xNN as transparent energy-storage dielectric ceramics.  相似文献   

20.
《Ceramics International》2021,47(22):31590-31596
In this study, the high ferroelectric hysteresis loss of (Pb0·93La0.07)(Zr0·82Ti0.18)O3 (PLZT 7/82/18) antiferroelectric (AFE) ceramics was reduced by employing a combinatorial approach of Mn acceptor doping followed by thick film fabrication via an aerosol deposition (AD) process. The grains of the as-deposited PLZT 7/82/18 AFE AD thick films were grown by thermal annealing at 550 °C to enhance their electrical properties. Investigation of the electrical properties revealed that Mn-doping results in improved dielectric and ferroelectric properties, increased dielectric breakdown strength (DBS), and energy-storage properties. The Mn-doped PLZT AFE AD films possess a frequency-independent high dielectric constant (εr ≈ 660) with low dielectric loss (tan δ ≈ 0.0146), making them suitable candidates for storage capacitor applications. The bipolar and unipolar polarization vs. electric field (P-E) hysteresis loops of PLZT 7/82/18 AFE AD thick films were found to be slimmer than those of their bulk form (double hysteresis) with significantly reduced ferroelectric hysteresis loss, which is attributed to the AD-induced mixed grain structure. The Mn-doped PLZT 7/82/18 AFE AD thick films exhibited a low remnant polarization (Pr ≈ 9.22 μC/cm2) at a high applied electric field (~2750 kV/cm). The energy-storage density and energy efficiency of the Mn-doped PLZT AFE AD thick films were calculated from unipolar P-E hysteresis loops and found to be ~38.33 J/cm3 and ~74%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号