首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2017,43(7):5599-5606
Nano cobalt ferrites (CoFe2O4) were co-precipitated at various reaction temperatures (60, 70 and 80 °C) for 1 h. The reaction temperature greatly influenced the crystallite size and the magnetic behaviours of the nano CoFe2O4. The mean crystallite size ranged from 9 to 15 nm with the increase in the reaction temperature and the intensity of metal oxide vibrations at 568–550 cm−1 were also inclined. The synthesized samples were in the stoichiometric ratio of 1:2 (Co:Fe) with roughly spherical morphology. The synthesized cobalt nanoferrites exhibited ferromagnetism at room temperature and 5 K, and the saturation magnetization increased from 6.4 to 20 emu/g with the crystallite size.  相似文献   

2.
《Ceramics International》2016,42(5):6413-6421
Co/CoFe2O4 nanoparticles with the mean size of 8.8, 10.8 and 16.9 nm were prepared by thermal decomposition of metal salts in the presence of citric acid. The X-ray diffraction patterns and Rietveld refinements confirmed coexistence of Co-ferrite and metallic cobalt phases in the nano-powders. Scanning electron microscope images showed an increase in particles aggregates mean diameter with increasing the annealing temperature. Magnetic hysteresis loops showed a demagnetization jump at low fields, which was attributed to different reversal fields of ferrite and the cobalt phases. Field-dependent behavior of maximum magnetization (Mmax), remanence (Mr), squareness (S) and coercivity (Hc) were studied through minor loops measurements. The calculated S value of the loops showed a maximum, between anisotropy and coercive fields. A sharp increase in Hc of larger particles was observed with increasing the applied field when compared to smaller particles. Henkel plots showed that the samples are interacting. Negative deviation of Henkel plots from linear behavior and negative δm plots revealed the dominant role of dipole–dipole interactions in the nano-aggregates.  相似文献   

3.
《Ceramics International》2022,48(22):33208-33218
Owing to its unique magnetic, dielectric, electrical and catalytic properties, ferrite nanostructure materials gain vital importance in high frequency, memory, imaging, sensor, energy and biomedical applications. Doping is one of the strategies to manipulate the spinel ferrite structure, which could alter the physico-chemical properties. In the present work, Co1-xZnxFe2O4 (x = 0, 0.1, 0.2, 0.3, and 0.4 wt%) nanoparticles were prepared by sol-gel auto-combustion method and its structural, morphological, vibrational, optical, electrical and magnetic properties were studied. The structural analysis affirms the single-phase cubic spinel structure of CoFe2O4. The crystallite size, lattice constant, unit cell, X-ray density, dislocation density and hopping length were significantly varied with Zn doping. The Fe–O stretching vibration was estimated by FTIR and Raman spectra. TEM micrographs show the agglomerated particles and it size varies between 10 and 56 nm. The Hall effect measurement shows the switching of charge carriers from n to p type. The dielectric constant (ε′) varies from 0.2 × 103 to 1.2 × 103 for different Zn doping. The VSM analysis shows relatively high saturation magnetization of 57 and 69 emu/g for ZC 0.1 and ZC 0.2 samples, respectively than that of undoped sample. All the prepared samples exhibit soft magnetic behaviour. Hence, it can be realized that the lower concentration of Zn ion doping significantly alters the magnetic properties of CoFe2O4 through variation in the cationic distribution and exchange interaction between the Co and Fe sites of the inverse spinel structure of CoFe2O4.  相似文献   

4.
This work presents a successful, environmentally-friendly route for tuning the magnetic and mechanical properties of CoFe2O4 sintered ceramics. The precursor powders were prepared from mixtures containing 100, 50 and 20% water, with the remaining volume composed of isopropanol. The synthesised powders were pressed into pellets and sintered at 1150 and 1200 °C. SEM micrographs indicate that the solvent exerts a major influence over the morphology of the ferrite grains. Vickers hardness shows a maximum for products from a medium containing 50% water, which could be directly related to the smaller average size of the CoFe2O4 grains. The coercivity of the pellets is strongly influenced by the reactional medium, with a maximum of 501.7 Oe (sample prepared at 20% water and fired at 1150 °C). This work opens up possibilities for fine tuning of the final properties of CoFe2O4 sintered ceramics, further enabling the utilisation of this material in advanced applications.  相似文献   

5.
This paper reports the structural, morphological, spectroscopic, dielectric, ac conductivity, and impedance properties of nanocrystalline Mn1-xZnxFe2O4. The nanocrystalline Mn–Zn ferrites were synthesized using a solvent-free combustion reaction method. The structural analysis using X-ray diffraction (XRD) pattern reveals the single-phase of all the samples and the Rietveld refined XRD patterns confirmed the cubic-spinel structure. The calculated crystallite size values increase from 8.5 nm to 19.6 nm with the Zn concentration. The surface morphological analysis using field emission scanning electron microscopy and the transmission electron microscopy confirms the nano size of the prepared ferrites. X-ray photoelectron spectroscopy was used to study the ionic state of the atoms present in the samples. Further, the high-resolution Mn 2p, Zn 2p, Fe 2p, and O 1s spectra of Mn1-xZnxFe2O4 does not result in the appearance of new peaks with Zn content, indicating that the Zn substitution does not change the ionic state of Mn, Zn, Fe, and O present in nanocrystalline Mn1-xZnxFe2O4. The investigated electrical properties show that the dielectric constant, tan δ and ac conductivity gradually decrease with increasing Zn substitution and the sample Mn0·2Zn0·8Fe2O4 has the lowest value of conductivity at 303 K. The ac conductivity measured at different temperatures shows the semiconducting nature of the ferrites. The impedance spectra analysis shows that the contribution of grain boundary is higher compared with the grain to the resistance. The obtained results suggest that the Zn substituted manganese ferrite nanoparticles can act as a promising candidate for high-frequency electronic devices applications.  相似文献   

6.
《Ceramics International》2022,48(17):24866-24876
This study is devoted to NiFe2O4 with different masses of Se (NFO + x%Se) (x = 0.0–4.0%) spinel ferrite nanoparticles production and investigation. The results of the crystal structure, microstructure and magnetic properties are presented as a function of the chemical content of the NFO + x%Se. Superparamagnetic (at 300 K) and ferrimagnetic (at 10 K) states are observed for all samples in the wide magnetic field range. The field dependencies of the magnetization show that Se-substitution does not change the main magnetic characteristics when x<2.0%. We observe a non-linear dependence of magnetic parameters for sample with x ≥ 2.0% (for NFO+2%Se, we determine the increase of the main magnetic parameters for 20% of the average values and the minimum values belong to the NFO+3%Se). The undoped sample and NiFe2O4+x%Se are soft magnets and characterized by the low coercivity (varying in the range 560–647 Oe). At T = 10 K squareness ratio (Sq. = Mr/Ms) is in a range of (0.216–0.318). This indicates a preferable single-domain state of crystallites, which differs from the magnetic structure at T = 300 K. Furthermore, the NFO + x%Se (x = 2.0) have a low overpotential of about ?327 mV, and a small Tafel slope of 91 mV/dec, which makes it a better for HER (hydrogen evolution reaction) catalyst than the undoped NiFe2O4.  相似文献   

7.
《Ceramics International》2016,42(16):18154-18165
Nanoparticles of Co1−xNixFe2O4 with x=0.0, 0.10, 0.20, 0.30, 0.40 and 0.50 were synthesized by co-precipitation method. The structural analysis reveals the formation of single phase cubic spinel structure with a narrow size distribution between 13–17 nm. Transmission electron microscope images are in agreement with size of nanoparticles calculated from XRD. The field emission scanning electron microscope images confirmed the presence of nano-sized grains with porous morphology. The X-ray photoelectron spectroscopy analysis confirmed the presence of Fe2+ ions with Fe3+. Room temperature magnetic measurements showed the strong influence of Ni2+ doping on saturation magnetization and coercivity. The saturation magnetization decreases from 91 emu/gm to 44 emu/gm for x=0.0–0.50 samples. Lower magnetic moment of Ni2+ (2 µB) ions in comparison to that of Co2+ (3 µB) ions is responsible for this reduction. Similarly, overall coercivity decreased from 1010 Oe to 832 Oe for x=0.0–0.50 samples and depends on crystallite size. Cation distribution has been proposed from XRD analysis and magnetization data. Electron spin resonance spectra suggested the dominancy of superexchange interactions in Co1−xNixFe2O4 samples. The optical analysis indicates that Co1−xNixFe2O4 is an indirect band gap material and band gap increases with increasing Ni2+ concentration. Dispersion behavior with increasing frequency is observed for both dielectric constant and loss tangent. The conduction process predominantly takes place through grain boundary volume. Grain boundary resistance increases with Ni2+ ion concentration.  相似文献   

8.
《Ceramics International》2017,43(9):6637-6647
Magnetic nanoparticles of nickel substituted cobalt ferrites, NixCo1−xFe2O4, (x=0 to 1 in the step of 0.2) were successfully synthesized by gas phase nucleation and growth process. For the first time, we report feasibility of synthesizing such mixed ferrite system using thermal plasma route. Further, effect of change in molar ratio of Co:Ni on the structural, optical and magnetic properties has been investigated in detail. The structural and phase formation analysis of the samples under investigation have been carried out using powder X-ray diffraction and Raman spectroscopy. The surface morphology of these particles has been studied using scanning electron microscopy and the micrographs so obtained were used to find out average gain size and size distribution. The optical and magnetic properties of the as synthesized samples were finally correlated with the magnetic moment of substituted species such as Ni for Co and cation distribution, analyzed using Mössbauer spectroscopy. Special modification in Thermo Gravimetric Analyzer was used to determine magnetic transition temperature.  相似文献   

9.
《Ceramics International》2016,42(5):6375-6382
Cobalt ferrite nanoparticles were synthesized by chemical co-precipitation, hydrothermal and sol gel auto-combustion methods. X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM) were used to investigate the structural characteristics and magnetic properties of cobalt ferrite nanocrystals. X-ray patterns revealed the production of a broad single cubic phase with the average crystallite size of 16, 18 and 178 nm for co-precipitation, hydrothermal and combustion methods, respectively. The FTIR measurements between 400 and 4000 cm−1 confirmed the intrinsic cation vibrations of spinel structure. The FE-SEM micrographs of the synthesized samples indicated the presence of two distinct groups of grains exhibiting different sizes and, different shapes for hydrothermal route. The results of magnetic hysteresis at a room temperature showed that the magnetic properties depend on the particle size and shape of particles, whereas the role of particle size is more significant.  相似文献   

10.
《Ceramics International》2017,43(2):2113-2122
The influence of the CoFe2O4 nanoparticles concentration in silica matrix on the structural and magnetic properties of xCoFe2O4/(100−x)SiO2 nanocomposites with x=10, 30, 50, 70 and 90 was studied. Magnetic CoFe2O4 nanoparticles dispersed in silica matrix was obtained by sol-gel method, followed by annealing at 1100 °C. The X-ray diffraction pattern and FT-IR spectra revealed the single spinel ferrite structure for all samples. The FT-IR spectra also suggested the formation of the amorphous silica matrix. The results showed that the increase of cobalt ferrite concentration (x) in the silica matrix leads to high crystallinity, specific surface area and particle size. The magnetic CoFe2O4 nanoparticles have spherical shapes and size in the 6–35 nm range. The Mössbauer measurements were fitted with two Zeeman sextets, indicating that all the samples were completely magnetically ordered. The vibrating sample magnetometer studies showed that the saturation magnetization (Ms) and coercivity (Hc) of the CoFe2O4 nanocrystals embedded in silica matrix possessed a linear relationship with the mean crystallite size. Also, the saturation magnetization of the studied nanocomposites increases with the increase of cobalt ferrite concentration (x) in the silica matrix.  相似文献   

11.
《Ceramics International》2017,43(8):6472-6476
Spherical-like Tb3+ and Eu3+ co-doped Gd2O3 nanoparticles with a particle size around 5.5 nm were synthesized by a polyol route. The optimized luminescence property was obtained when 5 mol% Tb3+ and 2 mol% Eu3+ were co-doped. The influence of different polyalcohol solvents (DEG/PEG) on particle size and luminescence properties was investigated. The results show that the nanoparticles Gd2O3:5%Tb3+ prepared in PEG presented greater particle size (around 79 nm) and higher luminescence intensity.  相似文献   

12.
《Ceramics International》2016,42(12):13459-13463
In this study the Mn1–2xZrxFe2−yNiyO4 nanoparticles fabricated by co-precipitation technique were investigated. Thermo-gravimetric analysis (TGA) exhibited the annealing temperature of the nanoparticles ~990 °C. Cubic spinel structure of Mn1–2xZrxFe2−yNiyO4 nanoparticles was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. Crystallite size was calculated by XRD data and found in the range of 32–58 nm. Photocatalytic activity of Mn0.92Zr0.04Fe1.88Ni0.12O4/graphene nanocomposites was tested by degrading methylene blue (MB) under visible light irradiation. The MB was almost completely degraded in the presence of Mn0.92Zr0.04Fe1.88Ni0.12O4-graphene nanocomposites under visible light irradiation. Dielectric parameters were also investigated in the frequency range 1×106–3×109 Hz. An overall decrease in the values of dielectric constant, dielectric loss and tangent loss was observed on account of the substitution of Zr and Ni with Mn and Fe cations.  相似文献   

13.
《Ceramics International》2022,48(1):720-731
Synthesis of mixed spinel ferrite nanocomposites AlzCdyZnx@Ni1-x-y-zFe2O4 through sol-gel method provides an excellent opportunity to develop a new generation of gas sensors. The single-phase cubic structure was confirmed and the crystallite size increases with increasing the substitution ratios due to the successful integration of the cations into the cubic system without changing the original structure. FTIR analysis was used to identify the stretching bending vibration of NiFe2O4 and its functional groups. The replacement of Ni2+ ions by Zn2+, Cd2+, and Al3+ ions play a major role in the occupation of Ni2+ and Fe3+ ions between octahedral B and tetrahedral A sites and it leads to enhance response and recovery times. The FESEM images show an increase in the particle size with polyhedral shape of nanocomposites in the range of 135–342 nm and it is strongly affecting the sensibility of the sensor materials. The nanoparticles were pressed into cylindrical pellets to measure the H2 gas detection of the novel sensor material. The hydrogen (H2) gas sensing behavior of sensor material (x + y + z = 0.45) shows the remarkable response times such as 35, 76, and 20 s to the lower concentrations 25, 50, and 100 ppm, respectively at 250 °C.  相似文献   

14.
《Ceramics International》2017,43(10):7889-7894
Magnetic cobalt ferrite (CoFe2O4) nanocrystals were synthesized via the hydrothermal method and the crystallite size was measured using Sherrer's equation. Instrumental broadening was a significant parameter for determining crystallite size. The effect of annealing time and calcination on crystallite size and magnetic properties was discussed. It was found that the coercivity was highly dependent on the crystallite size. As the crystallite size increased from 61 to 68.2 nm, room temperature coercivity increased from 1488 Oe to 1700 Oe, while high coercivity (5.2 kOe) was achieved at lower temperature (80 K). It was found that the presence of hematite could affect the crystallite size after calcination.  相似文献   

15.
《Ceramics International》2017,43(10):7682-7689
Herein, we report a sustainable production of magnetic cobalt ferrite nanoparticles by conventional (CHM) and microwave heating (MHM) method. Hibiscus rosa-sinensis extract was used as both reducing and stabilizing agent. Using plant extracts to synthesize nanoparticles has been considered as an eco-friendly method, since it avoids noxious chemicals. The plethora of plant extract mediated nanoparticles were compared by techniques, such as XRD, Rietveld, FT-IR, SEM, EDX, UV-Visible DRS, PL and VSM were carried out to analyze and understand their crystallite size, functional groups, morphology, optical and magnetic properties. The crystalline structure of cobalt ferrite nanoparticles revealed the cubic structure and the microwave heating of nanoparticles showed smaller crystallite size compared to the conventional heating, which was then confirmed by XRD analysis. To analyze the presence of functional groups and the phytochemical involvement of the plant extract was confirmed by FT-IR studies. Spherical morphology with less than 100 nm sized particles was confirmed by SEM and EDX analysis confirm the existence of Co, O, and Fe elements present in the samples. UV-Visible DRS studies were carried out to calculate the band gap of the as-synthesized nanoparticles, estimated from the Kubelka-Munk function, as 2.06, and 1.87 eV for CHM and MHM, respectively. Photoluminescence emission spectrum of the nanoparticles showed two different bands at 494 and 620 nm, which explores the optical properties of the nanoparticles, due to the quantum confinement effect. VSM analysis showed better ferromagnetic behavior, which can be used for magnetic applications.  相似文献   

16.
In order to accurately investigate the effect of cobalt substitutions in tin ferrite (SnFe2O4) properties, we prepared CoxSn1-xFe2O4 nanoparticles for different Co concentrations, x?=?0.0, 0.25, 0.50, 0.75, and 1.00 using a simple co-precipitation method. X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX) and diffuse reflectance spectra (DRS) are used to study of structural, magnetic, morphology, and optical properties. The XRD and FTIR results confirmed the formation of cubic spinel structure. The lattice parameter and unit cell volume of tin ferrite nanoparticles were found to increase by entering and increasing Co+2 content in 0.25, and then significantly decrease for higher contents. In accordance with the XRD results, a slight shift in main band υ1 (Fetetra+3?O) to lower wavenumber and then to higher wavenumber were observed in the IR spectra of Co content x?<?0.25 and x?>?0.25, respectively. In turn to, saturation magnetization, remanent magnetization and anisotropy constant of SnFe2O4 nanoparticles were gradually increased for x?=?0.50 and then decreased for x?>?0.50.  相似文献   

17.
In the present study, spinel structure CoFe2O4 nanoparticles were successfully synthesized by the sol-gel auto-combustion technique. The effect of apple cider vinegar (ACV) addition as an organic biocompatible agent on the size, morphology, and magnetic properties of CoFe2O4 nanoparticles was investigated in detail. The phase evolution, particle size, and lattice parameter changes of the synthesized phase have been estimated by using Rietveld structure refinement analysis of X-ray powder diffraction data. Also, Fourier transform infrared spectra (FT-IR) of the samples verified the presence of two expected bands correspond to tetrahedral and octahedral metal-oxygen complexes within the spinel structure. Furthermore, microstructural observations revealed that ultrafine particles have a semi-spherical morphology. It was shown that the particles size decreased from ~45 to ~17 nm with an increase in the amount of ACV. Magnetic properties were carried out by vibrating sample magnetometer (VSM) at room temperature. Both the saturation magnetization (Ms) and coercivity (Hc) were found to be significantly dependent on the crystallite size and the amount of ACV.  相似文献   

18.
《Ceramics International》2017,43(14):10784-10790
The pure phased nanocrystalline Li0.25Ni0.5ErxFe2.25−xO4 (x=0.00, 0.04) ferrites were synthesized by the sol-gel auto combustion route and subsequently annealed at different temperatures. Thermal behavior of as-prepared materials was examined by the thermogravimetric and differential thermal analyzer (TG/DTA). The crystal structure, grain size and morphology were determined by using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the Er substitution as well as annealing temperatures on the structure, particle size and antibacterial properties were investigated. The antibacterial studies were carried out using both gram negative (Campylobacter jejuni, Enteropathogenic E. coli, Vibrio cholerae) and gram positive bacteria (Listeria monocytogenes and Staphylococcus aureus). The anti-biofilm activity of the doped nanocrystals was also evaluated. Doping of Er ions in Li-Ni ferrites enhanced antibacterial activity against the all tested bacteria. However, a marked decrease in the antibacterial activity of the doped nanocrystals was observed with the increase in the annealing temperature and the grain size. The significant reduction (P≤0.01) in the biofilm forming trends of all tested pathogens was noted when treated (doped nanocrystals) and untreated controls were compared. Campylobacter jejuni and Vibrio cholerae were found to be most susceptible to both the anti-bacterial (P≤0.01) and the anti-biofilm (P≤0.005) activities of the Li0.25Ni0.5Er0.04Fe2.21O4. The results indicated that Er doped Li-Ni nanoferrites can be used as a coating material to prevent the bacterial growth and the biofilm formation.  相似文献   

19.
《Ceramics International》2016,42(13):14475-14489
Sol-gel auto-combustion route using sucrose as fuel has been employed to synthesize nanocrystalline particles of SrZrxCoxFe(12−2x)O19 (0.0≤ x ≤1.0). The characterization of these materials has been done by TGA-DTA, FT-IR, XRD and EDS. SEM and TEM techniques have been used to study the structure and morphology. Magnetic properties have been investigated by VSM and Mössbauer spectroscopy (MS). The influence of calcination temperature on morphology and magnetic properties of samples is studied in a wide temperature range of 500–1100 °C. XRD analysis indicates the formation of pure single phase hexagonal ferrites at 900 °C. The crystallite size calculated using Scherrer equation lies in a narrow range of 21–33 nm. The crystallite size is small enough to obtain a suitable signal to noise ratio in high density recording medium. Substitution of Zr and Co for Fe has been found to have a profound effect on the structural, magnetic and electrical properties. Upon substitution saturation magnetization (MS) first increases from 62.67 emu/g to 64.84 emu/g (up to x=0.4) followed by a decrease to 49.71 emu/g at x=1.0. There is a slow fall in coercivity (HC) from 5785.74 (x=0.0) to 1796.51 Oe (x=1.0). Dielectric constant, dielectric loss tangent and AC conductivity in the frequency range 20 Hz to 120 MHz have been studied for all the compositions (x=0–1.0). The composition and frequency dependence of these dielectric parameters has been qualitatively explained.  相似文献   

20.
《Ceramics International》2016,42(12):13350-13358
In this study, nearly monodisperse cobalt ferrite (CoFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles (NPs) without any size-selection process have been fabricated through an alluring method in an oleylamine (OAM)/benzyl ether system. Samples were synthesized by thermal decomposition of metal acetylacetonates in a high-boiling solvent and in the presence of oleylamine as surfactant and reducing agent. XRD analysis confirmed the purity and nanosized of both products and TEM analysis showed the monodispersion of them also. The oleylamine coated nanoparticles exhibited semiconducting nature at lower frequencies i.e. conductivity enhances with temperature. The dc conductivity curves of ZnFe2O4@OAm and CoFe2O4@OAm NPs indicate significant temperature-dependent behavior. The temperature and frequency-dependent variations of dielectric loss (ε″) of MFe2O4@OAm NPs display an almost sharp exponential decrease with frequency which becomes more considerable at higher temperatures and at low at low frequency regime. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values have been determined. Although the Mössbauer spectra for the ZnFe2O4@OAm consists only one paramagnetic central doublet and CoFe2O4@OAm NPs have also one paramagnetic doublet and three magnetic Zeeman sextet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号