首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SiAlONs are important materials for high-temperature applications and creep properties of SiAlONs are largely controlled by the amount and type of sintering additives. It has been established that heat treatment can reduce the amount of amorphous intergranular phase through crystallization. However, there is no study on the creep behavior of heat-treated SiAlON ceramics containing multication sintering additives. Therefore, the aim of the study was to investigate the effect of heat treatment on the creep properties of multication containing (Y-Sm-Ca oxides) α/β-SiAlON ceramics. The heat treatments of the sintered samples were carried out at 1600°C for 2 hours. The creep tests were carried out in the range 1300-1400°C under different loads (50-150 MPa). The existing phases and the microstructures of samples before and after creep were investigated using XRD and SEM techniques. It was found that heat treatment resulted in a better creep performance compared to as-sintered samples. The activation energy and stress exponent for heat-treated SiAlONs were also calculated as 708 ± 45 kJ/mol and 1.4, respectively. Compared to the sintered sample values, the results suggested that the acting creep mechanism of grain-boundary sliding and cavitation was reduced with the heat treatment.  相似文献   

2.
Polymer-derived SiC-based fibers with fine-diameter (∼10–15 μm) and high strength (∼3 GPa) were prepared with carbon-rich and near-stoichiometric compositions. Fiber tensile strengths were determined after heat treatments at temperatures up to 1950 °C in non-oxidizing atmospheres and up to 1250 °C in air. The creep resistance of fibers was assessed using bend stress relaxation measurements. Fibers showed excellent strength retention after heat treatments in non-oxidizing atmospheres at temperatures up to 1700 °C for the carbon-rich fibers and up to 1950 °C for the near-stoichiometric fibers. The near-stoichiometric fibers also showed considerably better strength retention after heat treatments in air. Creep resistance of the as-fabricated fibers was greatly improved by high-temperature heat treatments. Heat-treated near-stoichiometric fibers could be prepared with ∼3 GPa tensile strengths and bend stress relaxation creep behavior which was significantly better than that reported for the Hi-Nicalon™ Type S near-stoichiometric SiC fibers.  相似文献   

3.
《Ceramics International》2022,48(14):20285-20293
The impact of adding 20 vol% SiC on the properties of TiB2 was studied in this research. The spark plasma sintering (SPS) process was used as the preparation technique at 1850 °C, the resulted composite was characterized using X-ray diffraction (XRD), field emission electron probe micro analyzer, transmission electron microscopy (TEM), field emission scanning electron microscopy, energy dispersive X-ray analysis, and nanoindentation. The prepared composite presented a relative density of ~98.5%. XRD and TEM results confirmed the in-situ formation of graphite; no in-situ TiC could be detected in the final microstructure of the composite. Forming a low melting point compound between SiO2 and B2O3 oxides lead to the creation of wet interfaces between the ingredients. In terms of mechanical properties, the composite possessed Vickers hardness of 21.6 ± 2.2 GPa, flexural strength of 616 ± 28 MPa, fracture toughness of 5.3 ± 1.2 MPa m1/2, and elastic modulus of 498 ± 12 GPa. According to the microstructural images, crack deflection, crack branching, crack arresting, crack bridging, and grain breaking events were found to be the main toughening mechanisms in this ceramic. In addition, the nanoindentation investigation indicated the role of SiC addition in improving the elastic modulus, hardness, and wear resistance of the prepared composite.  相似文献   

4.
《Ceramics International》2020,46(12):20068-20080
In this study, Al2O3–TiC composites synergistically reinforced with multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were prepared via spark plasma sintering (SPS). The effects of the MWCNT and GNP contents on the phase composition, mechanical properties, fracture mode, and toughening mechanism of the composites were systematically investigated. The experimental results indicated that the composite grains became more refined with the addition of MWCNTs and GNPs. The nanocomposites presented high compactness and excellent mechanical properties. The composite with 0.8 wt% MWCNTs and 0.2 wt% GNPs presented the best properties of all analysed specimens, and its relative density, hardness, and fracture toughness were 97.3%, 18.38 ± 0.6 GPa, and 9.40 ± 1.6 MPa m1/2, respectively. The crack deflection, bridging, branching, and drawing effects of MWCNTs and GNPs were the main toughening mechanisms of Al2O3–TiC composites synergistically reinforced with MWCNTs and GNPs.  相似文献   

5.
本文以Ti_2SnC陶瓷为先驱体,利用其高温下与Cu的反应原位自生TiC_(0.5)颗粒增强Cu基复合材料并研究了其压缩特性。通过差热分析、X射线衍射和扫描电子显微镜等手段分析了Ti_2SnC与Cu的反应行为,并探讨了制备工艺对复合材料的物相组成、增强相形貌及材料特性的影响。结果表明,Ti_2SnC与Cu在900°C就开始发生反应,Ti_2SnC中的部分Sn原子逃逸扩散到Cu基体内,留下TiC_(0.5)作为增强相颗粒;随着温度的升高,反应程度加剧;当温度达到1150°C时,Ti_2SnC全部分解,形成亚微米TiC_(0.5)增强Cu(Sn)复合材料。TiC_(0.5)颗粒随保温时间增加而更加均匀地分布在基体内。对于初始Ti_2SnC体积含量为30%的TiC_(0.5)/Cu(Sn)复合材料,保温时间从0 h增加至2 h,其抗压强度和压缩变形率分别从1109 MPa±11 MPa和24.4%±0.6%增加到1260 MPa±22 MPa和28.9%±1.1%。  相似文献   

6.
《Ceramics International》2017,43(18):16638-16651
Crack-free functionally graded TiC particle (TiCp) reinforced Ti6Al4V (TiCp/Ti6Al4V) composite was manufactured by laser melting deposition (LMD) technology with TiC volume fraction changing gradually from 0% to 50%. This research focuses on the relationship between the microstructure and mechanical properties (microhardness and tensile properties) of TiCp/Ti6Al4V composites under different TiC volume fractions. Besides the unmelted TiC particles, the granular and chain shaped eutectic TiC phases are observed in the composite with 5 vol% TiC due to the melting and dissolution of TiC particles into matrix. The granular and dendritic primary TiC phases are obtained in the composite with 10 vol% TiC, while the chain shaped eutectic TiC phases can scarcely be seen. The main reinforcement phases are primary TiC phases when the TiC volume fraction exceeds 15%. (i) The quantity of unmelted TiC particles, (ii) the quantity and size of primary TiC phases and (iii) the porosity of composite increase gradually when the TiC volume fraction increases. The interfaces exhibit good bonding between consecutive layers. The microhardness of the functionally graded TiCp/Ti6Al4V composite increases gradually with TiC volume fraction increasing. It is attributed to the C element in solid solution and the appearance of eutectic and primary TiC phases. The microhardness at the top layer with 50 vol% TiC is improved by nearly 94% compared with that at the Ti6Al4V side. The tensile strength of TiCp/Ti6Al4V composite with 5 vol% TiC is enhanced by nearly 12.3% compared with that of the Ti6Al4V matrix alloy. However, both the tensile strength and elongation of composite decrease gradually when the TiC volume fraction exceeds 5%. The reason is that the quantity of brittle unmelted TiC particles and the quantity and size of dendritic TiC phases increase with TiC volume fraction increasing. The fracture mechanism of the TiCp/Ti6Al4V composite is quasi-cleavage fracture.  相似文献   

7.
In the present work, nano-sized titanium carbide (0.5, 1.0 and 1.5?vol%) reinforced aluminum (Al) metal matrix composites were synthesized by powder metallurgy incorporating microwave sintering and hot extrusion. Microstructural, mechanical and thermal properties of hot extruded unreinforced aluminum and titanium carbide (TiC) reinforced aluminum composites are presented in this paper. X-ray diffraction (XRD) patterns and scanning electron microcopy (SEM) images show the homogeneous distribution of TiC nanoparticles in the Al matrix. The tensile and compressive strengths of Al composites increased with the increase in TiC content, while the ductility decreased. The CTE of Al composite decreased with the progressive addition of hard TiC nanoparticles. Overall, hot extruded Al 1.5?vol% TiC nanocomposite exhibited the best combination of tensile, compressive, hardness and Young's modulus of 186?±?3?MPa, 416?±?4?MPa, 9.75?±?0.5?GPa and ~103?GPa, respectively. High tensile strength and good thermal stability exhibited by Al-TiC nanocomposites developed in this study show the potential for a variety of weight-critical engineering applications.  相似文献   

8.
The paper describes the structure and properties of preceramic paper-derived Ti3Al(Si)C2-based composites fabricated by spark plasma sintering. The effect of sintering temperature and pressure on microstructure and mechanical properties of the composites was studied. The microstructure and phase composition were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. It was found that at 1150 °C the sintering of materials with the MAX-phase content above 84 vol% leads to nearly dense composites. The partial decomposition of the Ti3Al(Si)C2 phase becomes stronger with the temperature increase from 1150 to 1350 °C. In this case, composite materials with more than 20 vol% of TiC were obtained. The paper-derived Ti3Al(Si)C2-based composites with the flexural strength > 900 MPa and fracture toughness of >5 MPa m1/2 were sintered at 1150 °C. The high values of flexural strength were attributed to fine microstructure and strengthening effect by secondary TiC and Al2O3 phases. The flexural strength and fracture toughness decrease with increase of the sintering temperature that is caused by phase composition and porosity of the composites. The hardness of composites increases from ~9.7 GPa (at 1150 °C) to ~11.2 GPa (at 1350 °C) due to higher content of TiC and Al2O3 phases.  相似文献   

9.
《Ceramics International》2022,48(8):11215-11227
The main aim of this study was to apply high-energy longer mechanical milling and spark plasma sintering (SPS) techniques to produce in-situ α-Ti/TiO2/TiC hybrid composites from commercially pure-Ti (CP–Ti, HCP structure) powders. The CP-Ti powders were subjected to different milling times (0, 20, 40, 60, 80, 100, and 120 h). The results showed that the powder samples milled for 120 h produced Ti, Ti3O5, TiO, TiO2 phases, and dissolved C atoms from the process control agent (toluene) which were then converted to α-Ti, TiO2, and TiC phases (formed in-situ composites) through spark plasma sintering. This was expected due to more reactivity in the 120 h sample as longer milling introduces severe and robust structural refinements. Structural evaluations with increasing milling time were carried out using XRD, HRSEM, and HRTEM. The synthesized powders were then consolidated by SPS at pressures of 50 MPa and 1323 K for 6 min. The micro-hardness results have shown that the hardness was started to increase from 1.40 GPa to 5.56 GPa with increasing milling time due to more dislocation and pinning effect produced by grain refinement and formed TiO2/TiC intermetallic particles enhancing the strength of α-Ti matrix. The α-Ti/TiO2/TiC in-situ hybrid composite bulk sample yielded an ultimate compressive strength of 1.594 GPa.  相似文献   

10.
《Ceramics International》2023,49(5):7404-7413
TiB2 composite ceramics containing different amounts of Ti and TiC were fabricated via spark plasma sintering (SPS), and effects of their addition contents on the microstructure and mechanical properties were discussed. The newly formed phases of TiB with a cubic lattice structure in the composite ceramics were observed. At a relatively low temperature of 1510 °C, pressure of 50 MPa, and holding time of 5 min, the TiB2 composite ceramic with 30 wt% TiC and 10 wt% Ti additions acquired an excellent strength of 727 MPa and a high toughness of 7.62 MPa m1/2. The improvement in strength and toughness was attributed to the mixed fracture mode, second phase strengthening, and increased energy consumption for crack propagation caused by the newly formed phases and fine TiC particles. In addition, the significant effects of the Ti and TiC addition contents on the densification temperature and mechanical properties of the composite ceramics were determined using analysis of variance (ANOVA).  相似文献   

11.
《Ceramics International》2022,48(20):30376-30383
In this study, α/β-Si3N4 composite ceramics with high hardness and toughness were fabricated by adopting two different novel ternary additives, ZrN–AlN–Al2O3/Y2O3, and spark plasma sintering at 1550 °C under 40 MPa. The phase composition, microstructure, grain distribution, crack propagation process and mechanical properties of sintered bulk were investigated. Results demonstrated that the sintered α/β-Si3N4 composite ceramics with ZrN–AlN–Al2O3 contained the most α phase, which resulted in a maximum Vickers hardness of 18.41 ± 0.31 GPa. In the α/β-Si3N4 composite ceramics with ZrN–AlN–Y2O3 additives, Zr3AlN MAX-phase and ZrO phase were found and their formation mechanisms were explained. The fracture appearance presented coarser elongated β-Si3N4 grains and denser microstructure when 20 wt% TiC particles were mixed into Si3N4 matrix, meanwhile, exhibited maximum mean grain diameter of 0.98 ± 0.24 μm. As a result, the compact α/β-Si3N4 composite ceramics containing ZrN–AlN–Y2O3 additives and TiC particles displayed the optimal bending strength and fracture toughness of 822.63 ± 28.75 MPa and 8.53 ± 0.21 MPa?m1/2, respectively. Moreover, the synergistic toughening of rod-like β-Si3N4 grains and TiC reinforced particles revealed the beneficial effect on the enhanced fracture toughness of Si3N4 ceramic matrix.  相似文献   

12.
《Ceramics International》2016,42(10):12215-12220
The relationship between the structure, elemental composition, mechanical and tribological properties of TiC/amorphous carbon (TiC/a:C) nanocomposite thin films was investigated. TiC/a:C thin film of different compositions were sputtered by DC magnetron sputtering at room temperature. In order to prepare the thin films with various morphology only the sputtering power of Ti source was modified besides constant power of C source. The elemental composition of the deposited films and structural investigations confirmed the inverse changes of the a:C and titanium carbide (TiC) phases. The thickness of the amorphous carbon matrix decreased from 10 nm to 1–2 nm simultaneously with the increasing Ti content from 6 at% to 47 at%. The highest hardness (H) of ~26 GPa and modulus of elasticity (E) of ~220 GPa with friction coefficient of 0.268 was observed in case of the film prepared at ~38 at% Ti content which consisted of 4–10 nm width TiC columns separated by 2–3 nm thin a:C layers. The H3/E2 ratio was ~0.4 GPa that predicts high resistance to plastic deformation of the TiC based nanocomposites beside excellent wear-resistant properties (H/E=0.12).  相似文献   

13.
《Ceramics International》2023,49(4):5700-5706
In the paper, the aluminosilicate fiber-reinforced zirconia (ASf/ZrO2) ceramic composites were successfully fabricated by polymer impregnation and pyrolysis (PIP) method. The microstructure and high-temperature mechanical properties of the original composites were well studied. The results revealed that the composites could maintain the stability of microstructure at 1000 °C. The flexural strength increased from 58.82 ± 2.83 MPa to 88.74 ± 6.20 MPa and the flexural modulus increased from 29.26 ± 4.67 GPa to 40.76 ± 8.76 GPa. The thermal exposure improved the interfacial bonding and made the load transfer more effective. After heat treatment from 1200 °C to 1400 °C, the flexural strength gradually declined due to the crystallization of the AS fibers and ZrO2 matrix, while the flexural modulus increased in a completely different trend. After heat treatment at 1400 °C, the composites could maintain a flexural strength of 66.95 ± 4.24 MPa with a flexural modulus of 60.42 ± 7.25 GPa. But the fracture mode gradually evolved to brittleness.  相似文献   

14.
A C/C-ZrC-SiC composite was successfully prepared by high-solid-loading slurry impregnation combined with polymer infiltration and pyrolysis. The microstructure and ablation behavior of the C/C–ZrC–SiC composite were investigated. ZrC particles were uniformly distributed in the matrix, and the obtained C/C–ZrC–SiC composite had a high density of 2.74 g/cm3. After exposure to oxyacetylene flame with a heat flux of 3.86 MW/m2 for 120 s, the mass and linear ablation rates of the composite were 0.72 ± 0.11 mg/s and 0.52 ± 0.09 µm/s, respectively. The excellent ablation properties of the composite were attributed to the protection of the matrix by a three-layered oxide scale consisting of ZrO2/SiO2-rich/ZrO2-SiO2.  相似文献   

15.
《Ceramics International》2020,46(7):9070-9078
In this study, the influence of adding 0, 10, 20, and 30 vol% SiCw on the microstructure and physical-mechanical properties (relative density (RD), flexural strength, and Vickers hardness) of TiC-3 wt% WCn was investigated. All designed samples were spark plasma sintered under the same conditions: sintering temperature of 1900 °C, external pressure of 40 MPa, and dwell time of 7 min. Microstructural evaluation and relative density calculation revealed that the additives were dispersed homogeneously in the TiC matrix. Based on the Archimedes principles, RD values of >100% were measured for the composite samples with 20 and 30 vol% SiCw, due to not accounting the formation of non-stoichiometric TiC and (Ti,W)C phases in the calculations. On the contrary, the lowest RD was related to the sample with 10 vol% SiCw. On the other hand, the most significant values of Vickers hardness (28.6 GPa) and flexural strength (694 MPa) were obtained for TiC-3 wt% WCn and TiC-3 wt% WCn-20 vol% SiCw composite samples, respectively.  相似文献   

16.
《Ceramics International》2023,49(16):27069-27078
The application of Cu-graphite composites in the field of friction materials is limited by the poor wettability between Cu and graphite and weakened mechanical properties. In this work, in-situ TiC layers were generated by interfacial resistance sintering with direct current to manipulate the interfacial bonding of the composites and enhance their comprehensive properties. The Ti added to the composites would react with graphite at the interface to generate TiC layers and form strong Cu–TiC-graphite interfaces due to interfacial reactions. When the added Ti content is 6 wt%, the composite demonstrates the most excellent mechanical properties and tribological characteristics, i.e., yield strength (168 MPa) and wear rate (2.7 × 10−10 m2/N) are 93.1% higher and 29.7% lower than those of the Cu-graphite composite without Ti addition, respectively. The dense TiC layer induces the strengthening of the Cu matrix and serves as the reinforcing phase to optimize the interfacial bonding and stress transfer, which not only greatly enhances the mechanical properties of the composite but also enables the composite to take full advantage of the hard TiC and graphite phases to obtain stable friction coefficient and low wear rate. This work provides a simpler technique to prepare modified Cu-graphite composites with excellent performance and contributes to the in-depth understanding of the enhancement mechanism of hard ceramic layers on the mechanical and tribological properties of composites.  相似文献   

17.
The aim of this work was to investigate the effect of silicon content on the formation and morphology of Ti3SiC2 based composite via infiltration of porous TiC preforms. The gelcasting process was used for fabrication of preforms. It was found that the infiltrated sample at 1500 °C for 90 min from a mixture of 3TiC/1.5Si containing 92 wt.% Ti3SiC2. With the increasing of TiC and SiC impurity phases, Vickers hardness was increased to the maximum value of 12.9 GPa in Ti3SiC2–39 wt.%TiC composite. Microscopic observations showed that the Ti3SiC2 matrix was composed of columnar, platelike and equiaxial grains with respect to silicon content.  相似文献   

18.
《Ceramics International》2020,46(8):11735-11742
Titanium carbide (TiC) composites containing 10 vol% silicon carbide whisker (SiCw) were spark plasma sintered at different temperatures of 1800, 1900, and 2000 °C under a pressure of 40 MPa and a holding time of 7 min. At the sintering temperature of 1900 °C, the relative density, Vickers hardness, and flexural strength of the sintered samples hit their maximum values of 98.7%, 24.4 GPa, and 511 MPa, respectively. The microstructural characteristics of the sintered samples were assessed by optical and field emission scanning electron microscopy (FESEM) and XRD. The results revealed that at 1900 °C, the dispersion of SiCw in the TiC matrix was homogenous, no chemical reaction took place between the reinforcement and the matrix, and produced a fine-grained microstructure. It was found that the thermal conductivity of SPSed samples did not have the same trend with relative density and mechanical properties. A maximum value of 32.3 W/mK was measured for the thermal conductivity of the composite sintered at 2000 °C.  相似文献   

19.
《Ceramics International》2022,48(4):4665-4674
To improve the toughness and friction properties of carbon fiber reinforced ceramic matrix composite, a Cu alloy modified carbon fiber reinforced TiC based ceramic matrix composite was designed and prepared by TiCu alloy melt infiltration at low temperatures up to 1100 °C. The as-produced composite was mainly composed of carbon, TiC, Ti3Cu4, TiCu4 and Cu phases. Due to the ductile Cu alloy introduced into the matrix, the composite showed good mechanical performance especially the fracture toughness. The flexural strength reached about 248.36 MPa while the fracture toughness was up to 15.78 MPa·m1/2. The high toughness of the composite was mainly attributed to the fiber bridging, fiber pull-out, interface debonding, crack propagation and deflection. The tribological performance of the as-produced composite was measured using SiC and 440C stainless steel balls as counterparts, respectively. The as-prepared composite exhibited good wear resistance and the wear mechanism was discussed based on the microstructural observations.  相似文献   

20.
To overcome the main limitation of oxide ceramic matrix composites (Ox-CMCs) regarding thermal degradation, the use of matrix doping is analyzed. Minicomposites containing Nextel 610 fibers and alumina matrices with and without MgO doping were produced. The thermal stability of the minicomposites was evaluated considering their microstructure and mechanical behavior before and after thermal exposures to 1300 °C and 1400 °C for 2 h. Before heat treatment, both composite types showed very similar microstructure and tensile strength. After heat treatment, densification, grain growth and strength loss are observed. Furthermore, the MgO dopant from the matrix diffuses into the fibers. As a result, abnormal fiber grain growth is partially suppressed and MgO-doped composites show smaller fiber grains than non-doped composites. This more refined microstructure leads to higher strength retention after the heat treatments. In summary, doping the matrix can increase the overall thermal stability without impairing the room-temperature properties of Ox-CMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号