首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
《Ceramics International》2021,47(23):33330-33337
The mixed powders of TiH2, molybdenum, aluminum and graphite with molar ratios of 2/2/n/2.85 (n ranges from 1.0 to 1.4 mol with an interval of 0.1 mol) were used as raw material powders for this work, and a novel porous Mo2Ti2AlC3 was synthesized via reactive synthesis. Through systematic research on the pore structure parameters of porous Mo2Ti2AlC3 prepared with different aluminum content, the results show that there is a clear correlation between the aluminum content and the pore structure parameters. With the aluminum content rising from 1.0 to 1.2 mol, the viscous permeability coefficient and pore size decreased, while the porosity increased; When the aluminum content increased from 1.2 to 1.4 mol, the pore structure parameters of porous Mo2Ti2AlC3 displayed an opposite trend. The reasons for the evolution laws of these pore structure parameters were also discussed in depth. In addition, the pore structure forming mechanism of porous Mo2Ti2AlC3 ceramics during the activation reaction sintering process has been explored. This work can provide an important reference for the subsequent preparation of quaternary porous MAX phase ceramics.  相似文献   

2.
《Ceramics International》2021,47(20):28288-28295
Using the mixed powder of TiH2, graphite, aluminum and vanadium as starting materials, porous TiVAlC ceramics were fabricated by the reactive synthesis technology at 1300 °C. The chemical steadiness of porous TiVAlC along with the effects of sintering temperature on the viscous permeability coefficient, strength, porosity, pore size and volume expansion rate of the porous TiVAlC were explored, and the mechanism of pore formation was also revealed. The preparation process includes five steps as follows: (i) the complete decomposition of stearic acid at 500 °C; (ii) the pyrolysis of TiH2 at 700 °C, converting TiH2 into hydrogen and titanium (iii) The solid-liquid chemical reaction of solid vanadium, titanium and molten aluminum at 700 °C, converting the mixture into V–Al and Ti–Al compounds; (iv) At 900–1100 °C, Surplus V and Ti interact with graphite to synthesize carbides of TiVC2, VC, and TiC; (v) Reactive synthesized carbides (TiVC2, VC, and TiC), Ti2AlC, V–Al and Ti–Al compounds that yield porous TiVAlC at 1300 °C.  相似文献   

3.
《Ceramics International》2021,47(18):25520-25530
(Ti0·8Mo0.2)3AlC2 solid solutions were successfully synthesized from Ti, Al, TiC, and Mo powders using the in situ hot-pressing sintering method. The tribological properties of (Ti0·8Mo0.2)3AlC2 and the reference Ti3AlC2 in the temperature range 25–800 °C were evaluated in ambient air with the counterpart of Al2O3 balls. The results show that (Ti0·8Mo0.2)3AlC2 has improved lubricating properties and wear resistance above 400 °C compared with Ti3AlC2. This can be contributed to the formation of tribo-oxidation films containing MoO3 and MoO3-x. Structural characterization of the tribo-oxidation films was conducted using SEM, EDS, Raman spectroscopy, and XPS to evaluate the effect of Mo doping on the wear mechanisms of Ti3AlC2 in detail.  相似文献   

4.
Ternary carbide Ti3AlC2 was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS) from elemental powder mixtures of Ti, Al and C, and the effect of Al content on formation of Ti3AlC2 during both processes was investigated. The results showed that adding proper Al content in the staring materials significantly increased the phase purity of Ti3AlC2 in the synthesized samples. Dense and high-purity Ti3AlC2 with <1 wt.% TiC could be successfully obtained by spark plasma sintering of powders mechanically alloyed for 9.5 h from a starting powder mixtures of 3Ti/1.1Al/2C at a lower sintering temperature of 1050 °C for 10–20 min.  相似文献   

5.
A comprehensive reaction mechanism of Ti3AlC2 MAX-phase formation from its elemental powders while spark plasma sintering has been proposed. Microstructural evaluation revealed that Al-rich TiAl3 intermetallic forms at around 660 °C once Al melts. Gradual transition from TiAl3 to Ti-rich TiAl and Ti3Al intermetallic phases occurs between 700 °C and 1200 °C through formation of layered structure due to diffusion of Al from periphery toward the centre of Ti particles. Formation of TiC and Ti3AlC transient carbide phases were observed to occur through two different reactions beyond 1000 °C. Initially, TiC forms due to interaction of Ti and C, which further reacts with TiAl and Ti and gives rise to Ti3AlC. Later, Ti3AlC also forms due to diffusion of C into Ti3Al above 1200 °C. Above 1300 °C, Ti3AlC phase decomposes into Ti2AlC MAX-phase and TiC in presence of unreacted C. Finally, Ti2AlC and TiC reacts together to from Ti3AlC2 MAX-phase above 1350 °C and completes at 1500 °C.  相似文献   

6.
In this paper, micrometer-sized porous Ti3SiC2 metal ceramic was fabricated through a reactive synthesis method using titanium hydride, silicon and graphite elemental powders. The factors including raw powders, pressing pressure, sintering procedure affecting the purity and the pore property of porous Ti3SiC2 were systematically studied. The results indicate that the purity, pore property including maximum pore size and porosity can be effectively controlled by adjusting the synthesis parameters.  相似文献   

7.
High-purity titanium aluminum carbide (Ti3AlC2) powders were synthesized by a microwave sintering method using different titanium sources as raw materials. The prepared products were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated that the synthesized Ti3AlC2 powders have high purity (97.5%) and even distribution of the grain size when using a 3TiH2/1.2Al/2C mixture as raw materials when the microwave sintering temperature and time were 1300°C and 30 minutes, respectively. The formation mechanism of the Ti3AlC2 is described as proceeding via four stages. The solid-phase reaction between titanium and aluminum occurs below the melting point of aluminum and the main product is a Ti3Al phase, which is an observed intermediate compound for the formation of Ti2AlC and Ti3AlC2. Thus, this study provides a beneficial approach to low-temperature synthesis of high-purity Ti3AlC2 materials.  相似文献   

8.
The molten salt method was used to synthesise the MAX phase compounds Ti2AlC and Ti3AlC2 from elemental powders. Between 900–1000?°C, Ti2AlC was formed alongside ancillary phases TiC and TiAl, which decreased in abundance with increasing synthesis temperature. Changing the stoichiometry and increasing the synthesis temperature to 1300?°C resulted in formation of Ti3AlC2 alongside Ti2AlC and TiC. The type of salt flux used had little effect on the product formation. The reaction pathway for Ti2AlC was determined to be the initial formation of TiC1-x templating on the graphite and titanium aluminides.  相似文献   

9.
Porous Ti3AlC2 ceramics were fabricated by reactive synthesis. The process of fabrication involved five steps: (i) the pyrolysis of stearic acid at 450 °C; (ii) the decomposition of TiH2 at 700 °C, which leads to the conversion of TiH2 to Ti; (iii) the solid–liquid chemical reaction of solid Ti and molten Al at 800–1000 °C, which converts the mixture to Ti–Al compounds; (iv) the newly synthesized Ti–Al compounds that react with surplus Ti and graphite to form ternary carbides and TiC at 1100–1200 °C; and (v) reactive synthesized ternary carbides and TiC that yield porous Ti3AlC2 at 1300 °C.  相似文献   

10.
The MAX phase is a material with excellent electrical and thermal conductivity and thermal shock and oxidation resistance owing to its metallike bonding properties. The impurities in the Ti3AlC2 MAX phase must be controlled because the oxides and TiC derived from the synthesis process remain in MXene and markedly affect the electrical conductivity and chemical stability. This study investigated whether the Ti3AlC2 MAX phase can be synthesized from titanium powder prepared from low-cost titanium scrap by hydrogenation–dehydrogenation (HDH) and deoxidation in the solid-state (DOSS) processes. Almost single-phase Ti3AlC2 MAX phase was obtained by synthesis at 1450°C for 5 h. The oxygen concentrations of the HDH-MAX and DOSS-MAX powders (25–45 μm) were 7215 and 3875 ppm, respectively. Oxygen reduction of titanium powder through DOSS can help improve the purity of Ti3AlC2 MAX phase by minimizing the imbalance in the stoichiometric ratio during synthesis. The HDH-MAX and DOSS-MAX powders prepared from titanium scrap displayed a higher Ti3AlC2 phase fraction and lower oxygen concentration than those of commercial Ti3AlC2 MAX phase powders. This cost reduction and purity improvement will increase the accessibility of the Ti3AlC2 MAX phase, supporting further research into its applications.  相似文献   

11.
So far many attempts have been made to synthesize phase-pure Ti3AlC2 MAX-phase. But still the challenge posed by the presence of TiC and Ti-Al based intermetallic transient impurity phases in the final product is a persisting problem. Spark plasma sintering (SPS) technique has been the most successful method to decrease the impurity content of the final product. Even so, synthesis of phase-pure Ti3AlC2 MAX-phase, without any TiC and Ti-Al based intermetallic impurities, has not been achieved and reported in literature with substantial evidences. Further, high purity Ti3AlC2 MAX-phase synthesized using SPS technique has shown lack of phase and microstructural stability above 1350°C temperature. In this work, we have reported an optimized method for producing phase-pure Ti3AlC2 MAX-phase (having more than 99 % purity) using commercial grade Ti, Al and C elemental powders through SPS technique. The final product also showed very good high temperature stability up to 1500°C under flowing Argon inert atmosphere.  相似文献   

12.
《Ceramics International》2022,48(4):5083-5090
Directional lamellar porous titanium scaffolds are widely used as bone implant bearing materials because of their anisotropic pore structure. Their mechanical properties can be effectively improved by enhancing the strength of pore walls through the introduction of ceramics. In this work, porous titanium implants were prepared by freeze casting combined with TiH2 decomposition. The graphene was introduced into the pore walls of porous titanium, which could transform into titanium carbide (TiC) in situ upon sintering. TiC was evenly distributed in the lamellar pore walls, and the interface was well bonded. The compression strength of the fabricated implants was up to 389.94 MPa when the graphene content was 3 wt%, which was 377.8% times as high as the porous titanium. The crack propagation was resisted by TiC because of the “pinning” effect on the pore wall. Some of TiC were pulled out from the matrix, and others were fractured. The strength of the fabricated implants was improved significantly by the large consumption of fracture energy. Also, fabricated porous titanium implants with TiC are suitable for bone implantation.  相似文献   

13.
A TiB2–Ti3AlC2 ceramic was manufactured by spark plasma sintering at 1900 °C temperature for 7 min soaking time under 30 MPa biaxial pressure. The role of Ti3AlC2 additive on the microstructure development, densification behavior, phase evolution, and hardness of the ceramic composite were studied. The phase characterization and microstructural investigations unveiled that the Ti3AlC2 MAX phase decomposes at the initial stages of the sintering. The in-situ formed phases, induced by the decomposition of Ti3AlC2 additive, were identified and scrutinized by XRD and FESEM/EDS techniques as well as thermodynamics principles. The sintered TiB2–Ti3AlC2 ceramic approached a near full density of ~99% and a hardness of ~28 GPa. The densification mechanism and sintering phenomena were discussed and graphically illustrated.  相似文献   

14.
《Ceramics International》2016,42(8):9995-10005
The paper discusses the development of a new material system for interconnect application in Solid Oxide Fuel Cells (SOFC) based on TiC–Ti3Al. Nano-sized TiC powders utilized in this research were synthesized using carbon coated TiO2 precursors from a patented process. The pressureless sintering of TiC–Ti3Al in a vacuum was applied at temperatures between 1100 °C and 1500 °C and content of Ti3Al was varied in the range of 10–40 wt%. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used for phase evaluation and sintering behavior. Relative density increased markedly with increasing sintering temperature because of grain growth and formation of the Ti3AlC2 secondary phase. Dense products (>95% TD) were prepared from nanosized TiC powders with 10 and 20 wt% Ti3Al, but with about 8 to 10% porosity for 30 and 40 wt% Ti3Al. The mechanical properties were determined from Vickers hardness and fracture toughness calculations. Vickers hardness decreased and fracture toughness increased with increasing Ti3Al content. The electrical conductivity and oxidation behavior of TiC–Ti3Al composites were investigated to evaluate the feasibility for SOFC interconnect application. The electrical conductivity measurements in the air at 800 °C for 100 h were made using the Kelvin 4-wire method.  相似文献   

15.
《应用陶瓷进展》2013,112(4):245-250
Abstract

Laminated ternary compound Ti3AlC2 crystals were synthesised by pressureless sintering the mixture powders of 3Ti/1·1Al/1·8C, 3Ti/1Al/1·8C/0·2Sn, 1Ti/1·8TiC/1Al and 1Ti1·8TiC1Al0·1Sn at 1400°C with preliminary liquid magnetic stirring mixing. The X-ray diffraction results indicate that Ti3AlC2 prepared from 3Ti/1Al/1·8C/0·2Sn has the highest purity, and the addition of appropriate Sn favours the synthesis of high purity Ti3AlC2. Scanning electron microscopy images show that Ti3AlC2 samples exhibit lamellar-like microstructure with thickness of ~100 nm. The tribological properties of Ti3AlC2 as an additive in 100SN base oil were evaluated with a ball on disc tester. The results show that the Ti3AlC2 additives exhibited good friction reduction and wear resistance at 5 wt-% concentration. Under determinate conditions, the base oil containing 5 wt-% Ti3AlC2 samples presented good tribology performance under the load of 15 N. The improved tribological properties of the Ti3AlC2 samples could be attributed to the formation of tribofilm in friction process.  相似文献   

16.
Ag/Ti3AlC2 composites are promising sliding contact material. Here, Ag/Ti3AlC2 composites were obtained via the hot pressing technique and their structure evolutions upon sintering temperature were investigated. Sintering temperature controlled the deintercalation of Al layers from Ti3AlC2, thus controlling the interfacial structure of Ag/Ti3AlC2 composites. Amorphous interface was found after sintering at 750?°C. TiCx particles with a size of around 10?nm were found in the interfacial region after sintering at 800?°C. Increasing sintering temperature to 850?°C, stripy structures composed of alternately arranged silver-rich phase and TiCx phase appeared around the edges of Ti3AlC2 particles. The over-saturated Al precipitates found in 850?°C sintered composites are cubic μ-Ag3Al inter-metallic compounds, which have the coherent relationship with Ag matrix.  相似文献   

17.
《Ceramics International》2022,48(21):31406-31417
Microstructural evolution and chemical reactions of Ti3AlC2 ceramics in the range from 1100 °C to 1500 °C in a graphite bed were investigated in the present work. The electron probe microanalysis (EPMA) results indicated that only a thin but unbroken reaction layer was formed on the surface of Ti3AlC2 ceramics at 1100 °C. It was further confirmed as aluminum oxide, while aluminum oxide fine grains were distributed separately over the surface layer along a dozen microns scale. At 1300 °C, a continuous and dense reaction layer which was mainly composed of aluminum oxide and titanium carbide was detected. After heat-treated at 1500 °C, an obvious difference in metallic luster contrast between the interior and exterior layer of cross-sections of the sample was observed. The Kirkendall effect was proposed to elucidate the above results. Titanium carbide, instead of TiO2, became the main product phase in the reaction product layer. It was attributed to the weak oxidative condition in a graphite bed and low oxygen partial pressure, which was not considered in the previous study. Besides, thermodynamic calculations result was provided to elaborate on the reaction mechanism in detail.  相似文献   

18.
《Ceramics International》2020,46(1):576-583
Ti3SiC2 has the unique properties integrating the advantages of metals and ceramics, and good open pore structure when alloyed with Al. In this work, porous Ti3SiC2 compounds with different Al/Si atom ratios were prepared through the reactive synthesis of elemental powders at 1300 °C. The results indicate that the phase compositions are determined by Al element mole number, and that the pore structure can be controlled through varying Ti particle size. The MAX phase transits from Ti3SiC2 with Al element mole number no more than 0.6 to Ti3AlC2 with Al element mole number in the range of 0.8–1.2. When Al element mole number is 0.6, the porous compound has a single MAX phase of Ti3SiC2 with uniform microporous structure and high bending strength. Porous Ti3SiC2 alloyed with 0.6Al has a slow linear increase rate of 0.0083%/μm in open porosity with increasing Ti particle size, and a strict linear relationship between the maximum aperture and Ti particle size with the increase rate of 0.0342 μm/μm. The pore structure formed by the phase transition mechanism for porous MAX phase has the smallest tortuosity factor compared with that formed by the clearance mechanism and the Kirkendall effect.  相似文献   

19.
Composite material consisting of Al2O3 and TiC in a matrix of highly textured Ti3AlC2 was fabricated in a two-step fabrication process. The Lotgering orientation factor for {00 l} planes of Ti3AlC2 in the textured top surface plane reached 0.71. Texture analysis showed an orientation relationship among Ti3AlC2, Al2O3 and TiC grains of [110] Ti3AlC2 // [110] TiC, (001) Ti3AlC2 // (111) TiC, and [110] Ti3AlC2 // [120] Al2O3, (001) Ti3AlC2 // (001) Al2O3. The texture grained material exhibited excellent mechanical properties, with compressive and flexural strengths of more than 2.5 times those of conventional coarse grained Ti3AlC2, and fracture toughness and hardness were 50% higher than those of conventional coarse grained Ti3AlC2. The microstructures of textured Ti3AlC2 and reported textured Ti2AlC were investigated and compared to interpret the differences in mechanical behavior of the two textured MAX phases.  相似文献   

20.
Reactive sintering of 8Ti:Al4C3:C powder mixtures to form the ternary carbide Ti2AlC is studied in the temperature range 570–1400 °C. After sintering at 1400 °C for 1 h, only the MAX phase Ti2AlC and some TiC are produced. A series of intermediate phases, such as TiC, Ti3Al, Ti3AlC are detected during the reactive sintering process. From X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations, a reaction path is proposed for the intermediate phases and Ti2AlC formation. Results show that reaction kinetics may play an important role in the understanding of the reaction mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号