首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(5):8048-8057
To enhance the absorption performance of silicon carbide fiber (SiCf), hybrid fibers with a double shell structure (Ti3SiC2 and carbon nanotubes (CNTs)) on the SiCf (CNT@Ti3SiC2@SiCf) were successfully synthesized by the combination of molten salt method and floating catalytic chemical vapor deposition. A series of 10% weight fraction fibers reinforced paraffin samples was prepared to study the double coating influences on the electromagnetic wave (EMW) absorption performances. Coated by Ti3SiC2 and CNTs, the dielectric permittivity of hybrid fibers could be modulated in a quite wide range. The CNT@Ti3SiC2@SiCf with a thickness of 3.8 mm showed a minimum reflection loss value of ?53 dB at 6.57 GHz, and the CNT@Ti3SiC2@SiCf with a thickness of 2.5 mm presented a wide effective absorption bandwidth of 5.6 GHz (from 9 to 14.6 GHz). The highly improved EMW absorption performance of CNT@Ti3SiC2@SiCf was attributed to the combination of conductive loss and dielectric loss aroused by interfaces. The excellent absorption performance provided the modified SiCf with a high potential in the application of EMW absorbers.  相似文献   

2.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   

3.
In this paper, Co2Si(Co)/SiCN composite ceramics were synthesized by simple precursor-derived ceramics method. The phase composition, morphology, and microwave absorption properties of Co2Si(Co)/SiCN composite ceramics at different pyrolysis temperatures (1000–1400°C) were studied. When pyrolysis temperature was 1300°C, carbon nanowires (CNWs), Co2Si, Si2N2O, SiC and Si3N4 were in situ generated and the best electromagnetic wave (EMW) absorption performance was obtained. The minimum reflection loss reached−50.04 dB at 4.81 mm, and the effective absorption bandwidth broadened to 3.48 GHz (14.52–18 GHz) at 1.31 mm. The excellent EMW absorption performance mainly comes from the coexistence of multiple loss mechanisms, including the magnetic loss of Co2Si, the conduction loss of CNWs, and the heterogeneous interfaces polarization between varieties of nanocrystals and amorphous ceramic matrix. By adjusting the sample thickness from 1 to 5 mm, the effective absorption of S1300 can cover the entire X and Ku bands, from 3.36 to 18 GHz. This study provides a simple way to synthesize high performance ceramic-based microwave absorbing materials.  相似文献   

4.
The Si-O-C ceramics were prepared by polymer-derived ceramic method using polysiloxane/FeCl3 as precursor with the FeCl3 content of 1.0 wt%. The microstructure, dielectric properties, and electromagnetic wave (EMW) absorbing properties in X band of the Si-O-C ceramic were investigated. It was found that the pyrolysis temperature has a great influence on the amount of in-situ formed CNTs and the transformation from CNTs to 1D SiC nanostructures. With the temperature rising from 1000 to 1500°C, the SiC formed with various morphologies including SiC microspheres, needle-like SiC, and SiC nanowires which were transformed from CNTs. The EMW absorbing properties were dramatically improved when the pyrolysis temperature raised to 1500°C; the minimum reflection loss (RL) was −58.37 dB of sample with a thickness of 2.95 mm at 10.11 GHz, and the absorbing band (RL ≤−20 dB) of sample at a thickness of 3.0 mm covers 3.8 GHz (8.2-12.0 GHz), which means more than 99% of the EMW were absorbed. The enhancement of EMW absorbing properties of bulk Si-O-C ceramics was attributed to the interfacial polarization induced by in-situ heterogeneous nanostructures with complex interfaces.  相似文献   

5.
《Ceramics International》2022,48(14):20168-20175
To improve the electromagnetic (EM) wave absorption performance of rare earth silicate in harsh environments, this work synthesized dense SiC–Y2Si2O7 composite ceramics with excellent EM wave absorption properties by using the polymer permeation pyrolysis (PIP) process, which introduced carbon and SiC into a porous Y2Si2O7 matrix to form novel composite ceramics. SiC–Y2Si2O7 composite ceramics with different numbers of PIP cycles were tested and analysed. The results show that the as-prepared composites exhibit different microstructures, porosities, dielectric properties and EM wave absorption properties. On the whole, the SiC–Y2Si2O7 composite ceramics (with a SiC/C content of 29.88 wt%) show superior microwave absorption properties. The minimum reflection loss (RLmin) reaches ?16.1 dB when the thickness is 3.9 mm at 9.8 GHz. Moreover, the effective absorption bandwidth (EAB) included a broad frequency from 8.2 GHz to 12.4 GHz as the absorbent thickness varied from 3.15 mm to 4.6 mm. In addition, the EM wave absorption mechanism was analysed profoundly, which ascribed to the multiple mediums of nanocrystalline, amorphous phases and turbostratic carbon distributed in the Y2Si2O7 matrix. Therefore, SiC–Y2Si2O7 composite ceramics with high-efficiency EM wave absorption performance promise to be a novel wave absorbing material for applications in harsh environments.  相似文献   

6.
It is difficult for ceramic matrix composites to combine good electromagnetic wave (EMW) absorption properties (reflection coefficient, RC less than -7 dB in X band) and good mechanical properties (flexural strength more than 300 MPa and fracture toughness more than 10 M P·m1/2). To solve this problem, two kinds of wave-absorbing SiC fibers reinforced Si3N4 matrix composites (SiCf/Si3N4) were designed and fabricated via chemical vapor infiltration technique. Effects of conductivity on EM wave absorbing properties and fiber/matrix bonding strength on mechanical properties were studied. The SiCf/Si3N4 composite, having a relatively low conductivity (its conduction loss is about 33% of the total dielectric loss) has good EMW absorption properties, i.e. a relative complex permittivity of about 9.2-j6.4 at 10 GHz and an RC lower than ?7.2 dB in the whole X band. Its low relative complex permittivity matches impedances between composites and air better, and its strong polarization relaxation loss ability help it to absorb more EM wave energy. Moreover, with a suitably strong fiber/matrix bonding strength, the composite can transfer load more effectively from matrix to fibers, resulting in a higher flexural strength (380 MPa) and fracture toughness (12.9 MPa?m1/2).  相似文献   

7.
Y3Si2C2 ternary ceramics were in-situ grown on the third-generation Chinese commercial SiC fiber (KD-SA SiC fiber) surface via molten salt method. Microstructures and oxidation/corrosion behavior of in-situ grown Y3Si2C2 coated SiC fibers exposed to air and wet-oxygen at 1400 ℃ were investigated. Results indicated that the layered Y3Si2C2 slices with thickness of approximately 15 nm can be successfully in-situ grown on SiC fibers. The product on the fibers surface after oxidation/corrosion at 1400 ℃ for 1 h in both ambient air and wet-oxygen are Y2Si2O7 and SiO2. Moreover, microstructural characterization indicates that the immigration and expansion of gaseous bubbles induced by oxidation product, mainly CO, result in microstructural differences of SiC fiber specimens, and finally oxidation mechanism based on the microstructural difference were proposed.  相似文献   

8.
The hybrid network of Si3N4 whiskers and conducting carbon fiber has great potential for microwave absoprtion applications. The high electrical conductivity of the carbon fiber helps to transform the microwave transparent Si3N4 into microwave absorbing materials. Herein, the microwave absorption performance of 5–20 vol % of carbon fiber reinforced reaction bonded Si3N4 (Cf-RBSN) composites have been discussed in detail. The Cf reinforcement tuned the X-band dielectric properties of the RBSN composites. The 5 vol % Cf-RBSN composite exhibit a minimum reflection loss (RLmin) of ?36.16 dB (99.998% microwave absorption) at 11.89 GHz and a high specific reflection loss of 920 dB. g?1 for 5.9 mm thickness, while 20 vol % Cf-RBSN composites resulted in RLmin of ?22.86 dB at 11.56 GHz with a low thickness of 1.5 mm. Thus, the superior microwave absorption performance of the prepared lightweight composites results from the multiple interfacial polarization, dipole polarization, and conduction loss due to the 3D network of interconnected Si3N4 whiskers and Cf.  相似文献   

9.
Porous Si3N4–SiC composite ceramic was fabricated by infiltrating SiC coating with nano-scale crystals into porous β-Si3N4 ceramic via chemical vapor infiltration (CVI). Silica (SiO2) film was formed on the surface of rod-like Si3N4–SiC grains during oxidation at 1100 °C in air. The as-received Si3N4–SiC/SiO2 composite ceramic attains a multi-shell microstructure, and exhibits reduced impedance mismatch, leading to excellent electromagnetic (EM) absorbing properties. The Si3N4–SiC/SiO2 fabricated by oxidation of Si3N4–SiC for 10 h in air can achieve a reflection loss of ?30 dB (>99.9% absorption) at 8.7 GHz when the sample thickness is 3.8 mm. When the sample thickness is 3.5 mm, reflection loss of Si3N4–SiC/SiO2 is lower than ?10 dB (>90% absorption) in the frequency range 8.3–12.4 GHz, the effective absorption bandwidth is 4.1 GHz.  相似文献   

10.
《Ceramics International》2021,47(19):27058-27070
The porous SiC–Si3N4 composite ceramics with good EMW absorption properties were prepared by combination of gelcasting and carbothermal reduction. The pre-oxidation of Si3N4 powders significantly improved the rheological properties of slurries (0.06 Pa s at 103.92 s−1) and also suppressed the generation of NH3 and N2 from Si3N4 hydrolysis and reaction between Si3N4 and initiator APS, thereby reducing the pore defects in green bodies and enhancing mechanical properties with a maximum value of 42.88 MPa. With the extension of oxidation time from 0 h to 10 h, the porosity and pore size of porous SiC–Si3N4 composite ceramics increased from approximately 41.86% and 1.0–1.5 μm to 46.33% and ~200 μm due to the production of CO, N2 and gaseous SiO, while the sintering shrinkage decreased from 16.24% to 10.50%. With oxidation time of 2 h, the Si2N2O fibers formed in situ by the reaction of Si3N4 and amorphous SiO2 effectively enhanced the mechanical properties, achieving the highest flexural strength of 129.37 MPa and fracture toughness of 4.25 MPa m1/2. Compared with monolithic Si3N4 ceramics, the electrical conductivity, relative permittivity and dielectric loss were significantly improved by the in-situ introduced PyC from the pyrolysis of three-dimensional network DMAA-MBAM gel in green bodies and the SiC from the carbothermal reduction reaction between PyC and SiO2 and Si3N4. The porous SiC–Si3N4 composite ceramics prepared by the unoxidized Si3N4 powders demonstrated the optimal EMW absorption properties with reflection loss of −22.35 dB at 8.37 GHz and 2 mm thickness, corresponding to the effective bandwidth of 8.20–9.29 GHz, displaying great application potential in EMW absorption fields.  相似文献   

11.
The Al and H3BO3 mixed powder was introduced into the PCS/Xylene precursor solution as in-situ synthesis α-Al2O3 filler by precursor infiltration and pyrolysis (PIP) method. The in-situ synthesis filler can effectively decrease the open porosity of SiCf/SiC composites and give rise to multiple scattering of microwave and dipolar polarization. Therefore, the mechanical and microwave absorption properties of SiCf/SiC composites can be simultaneously enhanced. The effects of in-situ synthesis filler on the morphologies, flexure strength and reflection loss values of SiCf/SiC composites were investigated. With 2 wt% in-situ synthesis filler, the flexure strength of SiCf/SiC composite was 305 MPa and the maximum reflection loss (RLm) can reach ? 54.68 dB with the effective absorption band (EAB) of 3.51 GHz in the X band. With 5 wt% in-situ synthesis filler, the flexure strength of SiCf/SiC composite was 207 MPa and the RLm was ? 30.91 dB. Due to the inefficient infiltration process, the RLm of SiCf/SiC composites with 10 wt% in-situ synthesis filler was only ? 27.36 dB. Nevertheless, the flexure strength of that composite was 259 MPa, owing to the dense matrix. Additionally, the flexure strength of SiCf/SiC composite without filler was 148 MPa and the RLm was ? 26.40 dB.  相似文献   

12.
《Ceramics International》2022,48(17):24803-24810
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) have been widely used as structural-functional materials at high temperatures. However, their mechanical and electromagnetic wave (EMW) absorbing properties will deteriorate due to high-temperature oxidation. Therefore, unique sandwich structure, consisting of inner Si3N4 impedance layer, middle porous SiOC loss layer and dense oxidation-resistant Si3N4 layer, was proposed to enhance multiple material properties in oxidation environment. Herein, SiCf/Si3N4–SiOC–Si3N4 composites was fabricated by alternating chemical vapor infiltration (CVI) and polymer infiltration pyrolysis (PIP) methods. For these composites, SiC fiber is used as both reinforcing phase and electromagnetic (EM) absorber. CVI Si3N4 matrix was distributed in inner and outer layer of the SiCf/Si3N4–SiOC–Si3N4 composites. While inner Si3N4 layer between BN interphase and SiOC matrix forms nano-heterogeneous interphase to consume EM energy and enhance mechanical properties of composites, outer dense and oxidation-resistant CVI Si3N4 coating serves to maintain properties. PIP SiOC matrix exhibits porous structure that can effectively deflect cracks and achieve multiple scattering of EMW. SiCf/Si3N4–SiOC–Si3N4 composites with sandwich structure demonstrated excellent EMW absorbing properties and mechanical performance in high-temperature oxidation environments.  相似文献   

13.
For enhancing the absorption ability of dielectric and electromagnetic wave (EMW), C-rich SiC NWs /Sc2Si2O7 ceramics are successfully fabricated through in-situ growth of SiC nanowires (NWs) into porous Sc2Si2O7 ceramics by precursor infiltration and pyrolysis (PIP) at 1400?°C in Ar. SiC NWs are in-situ formed in the pore channels via a vapor-liquid-solid (VLS) mechanism, the relative complex permittivity increases notably with the content of absorber (C-rich SiC NWs), which tune the microstructure and dielectric property of C-rich SiC NWs/Sc2Si2O7 ceramics. Meanwhile, the minimum reflection coefficient (RC) of C-rich SiC NWs/Sc2Si2O7 ceramic decreases from ?9.5?dB to ??35.5?dB at 11?GHz with a thickness of 2.75?mm, and the effective absorption bandwidth (EAB) covers the whole X band (8.2–12.4?GHz) when the content of absorber is 24.5?wt%. The results indicate that Sc2Si2O7 ceramics decorated with SiC NWs and nanosized carbon have a superior microwave-absorbing ability, which can be contributed to the Debye relaxation, interfacial polarization and conductivity loss enhanced by in-situ formed SiC NWs and nanosized carbon phases. The C-rich SiC NWs /Sc2Si2O7 ceramics can be a promising microwave absorbing materials within a broad bandwidth.  相似文献   

14.
《Ceramics International》2022,48(17):25111-25119
Electromagnetic wave (EMW) absorbing materials have been widely applied in the fields of military and engineering areas. It is of great significance to develop high-performance EMW absorbing materials. This work assembled the sandwich-like Ti3C2Tx based nanocomposites by the microwave-assisted annealing of CoFe-MOF@Ti3C2Tx (CFMF@Ti3C2Tx) precursors at different temperatures. Results show that, as the heat treatment temperature is 450 °C, the sandwich-like Ti3C2Tx@CoFe@TiO2 nanocomposites present better EMW absorption properties. The minimum reflection loss (RL) value was ?62.9 dB at 17.95 GHz with a thin thickness of 1.2 mm. Moreover, the effective absorption bandwidth (EAB) value was 5.02 GHz (12.74–17.76 GHz) with a thickness of 1.4 mm. The application of microwave-assisted annealing contributed to the formation of CoFe nanoparticles and TiO2 nanoparticles because of the ultra-fast heating rate. The introduction of the nanoparticles enhanced the multiple polarization, optimized the impedance matching and introduced magnetic loss, leading to the improvement of EMW absorption. When the annealing temperature further increased to 550 °C, the EMW absorbing performance was weakened, which was mainly correlated with the decrement of the interface area due to the increase of the TiO2 nanoparticle size and CoFe nanoparticle size. Thus, the loss effect of the multiple interface polarization weakens in the EMW absorption. In addition, the high permittivity of Ti3C2Tx disappears, which deteriorated the impedance matching and attenuation ability of EMW. Ultimately, sandwich-like Ti3C2Tx@CoFe@TiO2 nanocomposite with satisfactory EMW absorbing properties is established, promising for various EMW absorbing applications.  相似文献   

15.
For enhancing the dielectric and electromagnetic wave (EMW) absorption ability, SiC-Sc2Si2O7 ceramics were fabricated by introducing SiC into porous Sc2Si2O7 ceramics through precursor infiltration and pyrolysis (PIP). The Sc2Si2O7 powders were synthesized by sol-gel method and Sc2Si2O7 ceramics were prepared by pressure-less sintering. The results indicate that SiC nano-crystalline and turbostratic carbon derived from polycarbosilane distributed uniformly in electrically insulating matrix (Sc2Si2O7 matrix), resulting in tunable dielectric permittivity and EMW absorbing properties. Additionally, the content of C-rich SiC can be efficiently adjusted by PIP times. The SiC-Sc2Si2O7 ceramic showed excellent microwave absorption performance when the content of C-rich SiC was 25.3?wt.%. A minimum reflection coefficient of ?51.3?dB was obtained at 9.56?GHz with the specimen thickness of 3.6?mm. The effective absorption bandwidth covered 3.6?GHz (from 8.7 to 12.3?GHz). The excellent microwave absorption abilities of SiC-Sc2Si2O7 ceramic were mainly attributed to uniform distribution of C-rich SiC in Sc2Si2O7 matrix. The special structure can improve the impedance matching and enhance microwave absorption performance. Moreover, the defects, interfaces and conductive network existed in the materials, which can synergistically improve the EMW absorption ability.  相似文献   

16.
High-temperature structural electromagnetic wave (EMW) absorption materials are increasing in demand because they can simultaneously possess the functions of mechanical load-bearing, heatproof, and EMW absorption. Herein, SiCf/Si–O–C composites were prepared by precursor impregnation pyrolysis using continuous SiC fibers needled felt as reinforcement and polysiloxane as a precursor, respectively. The phase composition, microstructure, complex permittivity, and EMW absorption properties of SiCf/Si–O–C composites after annealing at various temperatures were investigated. The annealing at 1400–1500°C affects positively the EMW absorption performance of the composites, because the β-SiC microcrystals and SiC nanowires were generated by the activation of carbothermal reduction reaction in the composites, and the aspect ratio of SiC nanowires increased with the rise of temperature. The composites exhibit optimal EMW absorption performance, with the effective absorption bandwidth covering the entire X-band and the minimum reflection loss (RLmin) of −32.8 dB at 4.0 mm when the annealing temperature is raised to 1500°C. This is because that the impedance matching is improved as the rising of ε′ and decreasing of ε″ due to the conversion of free carbon in the composite into SiC nanowires.  相似文献   

17.
Carbon fibers reinforced Si3N4 composites with SiC nanofiber interphase (Cf/SiCNFs/Si3N4) were prepared by combining catalysis chemical vapor deposition and gel-casting process. Microstructures, mechanical properties, and electromagnetic wave absorption properties within X-band at 25°C-800°C of Cf/SiCNFs/Si3N4 composites were investigated. Results show that SiC nanofibers are combined well with Si3N4 matrix and carbon fibers, the fracture toughness is thus increased more than double from 3.51 MPa·m1/2 of the Si3N4 ceramic to 7.23 MPa·m1/2 of the as-prepared composites. As the temperature increases from 25°C to 800°C, Cf/SiCNFs/Si3N4 composites show a temperature-dependent complex permittivity, attenuation constant, and impedance. The relatively high attenuation capability of Cf/SiCNFs/Si3N4 composites at elevated temperature results in a great minimum reflection loss of −20.3 dB at 800°C with a thin thickness of 2.0 mm. The superior electromagnetic wave absorption performance mainly originates from conductive loss, multi-reflection, and strong polarization formed by the combined effects of carbon fibers and SiC nanofibers.  相似文献   

18.
《Ceramics International》2022,48(13):18567-18578
In this study, SiC interphase was prepared via a precursor infiltration-pyrolysis process, and effects of dipping concentrations on the mechanical, high-temperature dielectric and microwave absorption properties of the SiCf/SiC/Mu composites had been investigated. Results indicated that different dipping concentrations influenced ultimate interfacial morphology. The SiC interphase prepared with 5 wt% PCS/xylene solution was smooth and homogeneous, and no bridging between the fiber monofilament could be observed. At the same time, SiC interphase prepared with 5 wt% PCS/xylene solution had significantly improved mechanical properties of the composite. In particular, the flexural strength of the composite prepared with 5 wt% PCS/xylene solution reached 281 MPa. Both ε′ and ε′′ of the SiCf/SiC/Mu composites were enhanced after preparing SiC interphase at room temperature. The SiCf/SiC/Mu composite prepared with 5 wt% PCS/xylene solution showed the maximum dielectric loss value of 0.38 at 10 GHz. Under the dual action of polarization mechanism and conductance loss, both ε′ and ε′′ of the SiCf/SiC/Mu composites enhanced as the temperature increased. At 700 °C, the corresponding bandwidth (RL ≤ ?5 dB) of SiCf/SiC/Mu composites prepared with 5 wt% PCS/xylene solution can reach 3.3 GHz at 2.6 mm. The SiCf/SiC/Mu composite with SiC interphase prepared with 5 wt% PCS/xylene solution is expected to be an excellent structural-functional material.  相似文献   

19.
《Ceramics International》2020,46(6):7861-7870
This study proposes a combustion-based ceramic matrix composite processing technique intended on single-step in situ deposition of single-crystal SiC nanowires (SiCnw) on the surface of carbon fibers (Cf) and formation of SiCnw–reinforced SiC matrix. This was accomplished by Ta-catalyzed combustion of poly-(C2F4)-containing reactive mixtures with pre-mixed chopped Cf. Depending on the combustion conditions, carbon fiber surface is subjected either to formation of diffusion layers, ceramic particle incrustation or growth of continuous arrays of carbon-coated single-crystal SiCnw with a nearly defect-free lattice, 10–50 nm diameter and 15–20 μm length. Thermodynamics, phase and structure formation mechanisms are explored, and the optimal conditions are outlined for reproducible Cf/in situ SiCnw dual reinforcement of SiC-based ceramics. Hot pressing at 1500 °C produced Cf/in situ SiCnw-reinforced ceramic SiC–TaSi2 specimens with a relative density of 97%, 19 GPa Vickers hardness, 3-point flexural strength σ = 420 ± 70 MPa and fracture toughness K1C = 12.5 MPa m1/2.  相似文献   

20.
The poor wet-oxidation resistance limits the long-life service of SiCf/SiC composites as the hot end components of aero-engines. The stability of SiCf/SiC composites under high-temperature wet oxygen environment can be promoted by more robust SiC matrix. In this work, the effect of Y2O3 on the corrosion behaviors of SiC ceramics in flowing O2/H2O atmosphere at 1400 ℃ was studied. Duo to the continuous Y2Si2O7 layer formed on the surface, SiC-Y2O3 ceramics exhibit much better wet-oxidation resistance than original SiC ceramics. During the oxidation process, Y2O3 dispersed in the ceramics migrates to the surface and reacts with SiO2 to form β-Y2Si2O7. Subsequently, the β-Y2Si2O7 aggregates and grows to form a continuous Y2Si2O7 layer, inhibiting the corrosion from oxidizing medium to the inner SiC matrix. This study is expected to provide important ideas for the design and structure regulation of wet-oxidation resistant SiCf/SiC composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号