共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(14):15773-15779
Novel hydroxyapatite-zirconia-lanthanum oxide composites for bioceramic applications were synthesized and their structural, mechanical and biological properties were studied. Pure HA was produced via precipitation method and the composites were obtained by several fabrication steps: powder milling, mixing, cold pressing and sintering at 1100 °C for 1 h. The experimental results indicated that the composites consisted of hydroxyapatite as the main phase with a trace amount of tricalcium phosphate. Calcium zirconate (CaZrO3) was also formed by the reaction between zirconia and calcium oxide (CaO) which is the thermal decomposition product of hydroxyapatite. Addition of zirconia and lanthanum oxide resulted a more loose and porous structure on the surface. The diametral tensile strength of the composites was higher with respect to pure hydroxyapatite. The microhardness of the composites, except the one with the composition of 90 wt% HA and 10 wt% Zr, was relatively lower than that of pure HA but these composites had higher machinability. Cell culture studies with osteoblast-like Saos-2 cell line showed that composites and pure hydroxyapatite were biocompatible. Based on these findings, hydroxyapatite-zirconia-lanthanum oxide composites hold potential to be used in hard tissue replacement and regeneration therapies. 相似文献
2.
《Ceramics International》2020,46(12):20215-20225
This study develops a novel silver-copper/hydroxyapatite composite (Ag–Cu/HA) with high biocompatibility and antibacterial activity. Two different materials were synthesized, namely silver-hydroxyapatite (Ag-HA) and copper-hydroxyapatite (Cu-HA) composites, with 0.1%, 0.5%, and 1.0% (mol) of each metal. These materials were mixed in a planetary mill to obtain the Ag–Cu/HA composites. The results of our characterization demonstrated the low cytotoxicity and hemolytic response. The composite showed higher percent-inhibition for bacterial growth compared to those in separated composites of silver or copper with hydroxyapatite. Hence, these new materials promise higher efficacy as antibacterial hydroxyapatites. 相似文献
3.
《Ceramics International》2019,45(16):20002-20010
Load-bearing implants are developed with a particular emphasis placed on an application of ceramic hydroxyapatite coatings in order, to enhance the bioactivity of titanium implants and to shorten the healing time. Therefore, thin, fully crystalline coatings that are, highly adhesive, hydrophilic and demonstrating antibacterial properties are ly looked for. The aim of this research was to develop and characterize the properties of (nano)hydroxyapatite coatings implemented with nanocopper particles and obtained by the electrophoretic method. The deposition was carried out on the Ti13Zr13Nb alloy, either on a bare surface or a nanotubular oxide layer. The deposition was made for 1 or 2 min. The chemical composition, phase composition, coating structure, homogeneity, thickness, nanoindentation and nanomechanical properties, adhesion determined by a nanoscratch test, and wettability measured by a contact angle were investigated. The presence of nanotubular oxide layers caused no significant change in nanoindentation and nanomechanical propertie and an increase in adhesion strength and a decrease in the contact angle. The increase in deposition time resulted in an increased thickness, a decreased hardness, an increased adhesion strength and wettabilty. The observed effects in the composite (nano)HAp/Cu – (nano)TiO2 coatings are attributed to the change in the structure of coatings following the increasing deposition time and coating thickness. 相似文献
4.
《Ceramics International》2017,43(5):4576-4582
This paper presents the effects of microfibre contents on mechanical properties of fly ash-based geopolymer matrices containing glass microfibres at 0, 1, 2 and 3 mass%. The influence of glass microfibres on the fracture toughness, compressive strength, Young's modulus and hardness of geopolymer composites are reported, as are the microstructural properties investigated using scanning electron microscopy. Results show that the addition of 2 mass% glass microfibres was optimal, exhibiting the highest levels of fracture toughness, compressive strength, Young's modulus and hardness. The results of the microstructural analysis indicate that the glass microfibres act as a filler for voids within the matrix, making a dense geopolymer and improving the microstructure of the binder. This leads to favourable adhesion of the composites, and produces a geopolymer composite with good mechanical properties, comparable to pure geopolymer. The failure mechanisms in glass microfibre-reinforced geopolymer composites are discussed in terms of microstructure. 相似文献
5.
Siriphorn Phromyoo Narumon Lertcumfu Pharatree Jaita Parkpoom Jarupoom Kamonpan Pengpat Gobwute Rujijanagul 《Ceramics International》2018,44(3):2661-2667
In the present work, a new composite between β-tricalcium phosphate (a bioceramic material) and barium zirconium titanate (a ferroelectric material) were fabricated. Beta-tricalcium phosphate (β-TCP) powder was synthesized from egg shells while barium zirconium titanate powder was synthesized from metal oxide powders. The composites were fabricated by a solid-state reaction method. Effects of barium zirconium titanate on many properties of the composites were investigated. Barium zirconium titanate additive improves the electrical properties of the composites such as dielectric, ferroelectric and piezoelectric properties. Furthermore, the mechanical properties, such as hardness are improved by the additive. In-vitro bioactivity test suggests that β-tricalcium phosphate has a higher apatite forming ability as compared to the BZT. The obtained results indicate that the composites are a promising biomaterial candidate. 相似文献
6.
《Ceramics International》2016,42(15):17023-17031
The characterization of chitosan – hydroxyapatite (CH – HAp) composite sponges prepared via freeze-drying methodology is reported in this study. Stearic acid (SA), added as a surface modifier of the HAp nanoparticles, induced changes in the TG/DTG results, particle size distribution and particle morphology. Composite sponges prepared with SA coated HAp demonstrated enhanced biocompatibility and structural properties, as compared to the composites prepared with uncoated HAp. SA coating modified the morphology of the composite, promoting a better dispersion of HAp particles within the composite sponges, and better homogeneity of the polymeric cover with HAp particles. The viability of the composites for cell culture applications was analyzed, and the results suggest that the sponges are biocompatible. Therefore, SA proved to be a good candidate for surface coating of HAp nanoparticles prevent agglomerations, and could be used effectively in the preparation of biocompatible composite sponges with chitosan. 相似文献
7.
Salih Durdu Gizem Cihan Emine Yalcin Atilgan Altinkok 《Ceramics International》2021,47(8):10972-10979
The well-ordered titanium dioxide (TiO2) nanotube array surfaces were formed at different voltages such as 20 V, 40 V, 60 V, 80 V and 100 V for 1 h on cp-Ti by anodic oxidation (AO) technique. And then, to improve crystallinity of the surface, heat treatment was applied at 450 °C for 1 h to all surfaces without any morphological changing. The surface and cross sectional morphology, elemental structure, phase composition, functional groups, roughness and thickness, wettability and mechanical results were investigated by SEM, EDX, XRD, FT-IR, AFM, contact angle measurement device and nanoindentation tester, respectively. Mainly, anatase- and rutile-TiO2 phases were obtained at post-heat treatment whereas only, Ti phase was detected on AO surfaces at pre-heat treatment. All nanotube structures and the elements of Ti and O were uniformly distributed through the whole surface. The roughness and thickness of tube structures usually increased with increasing voltage values and measured. The roughness and thickness values were measured as 10.67–111.97 nm and 0.21–1.92 μm, respectively. TiO2 nanotube surfaces exhibited hydrophobic behaviors with respect to plain Ti surface. Furthermore, mechanical properties such as hardness and elastic modulus of the coating produced at minimum voltage were great compared to ones at higher voltage and plain Ti surface under a Berkovich indenter due to phase structure, homogeneity and density of nanotube structures. 相似文献
8.
《Ceramics International》2020,46(4):4307-4313
Ceramic particles were utilized to improve thermal stability and ablation properties of carbon/phenolic (C/Ph) composites. In this study, zirconium carbide (ZrC) modified C/Ph composites were fabricated by vacuum impregnation method, and effects of ZrC content on thermal stability and ablation properties were investigated by thermogravimetry analysis and plasma wind tunnel test. Moreover, morphological characterization was carried out using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. Experimental results showed that increasing ZrC content could lead to an evident increase in char yield, but an observable reduction in linear ablation rates and back-face temperatures because of the formation of ZrO2 layer on the ablation surface. The work provided an effective way to improve thermal stability and ablation properties of C/Ph composites. 相似文献
9.
M. Dressler F. DombrowskiU. Simon J. BörnsteinV.D. Hodoroaba M. FeiglS. Grunow R. GildenhaarM. Neumann 《Journal of the European Ceramic Society》2011,31(4):523-529
Porous ceramics prepared by the foam replication technique have a high porosity and low mechanical stability. It has been reported that coating such porous ceramics with gelatin allows for an improved compressive strength. Little details regarding the influence of important gelatin parameters such as concentration, temperature and drying conditions as well as bloom number which is a measure of the gel rigidity, on this toughening effect are available. This paper investigates the influence of these parameters on compressive strength of gelatin coated porous hydroxyapatite ceramics. It was found that concentration in the gelatin sols has a marked impact whereas sol temperature, bloom number and differing conditions during subsequent drying have only little influence on the compressive strength of the coated ceramics. 相似文献
10.
《Ceramics International》2017,43(12):9105-9109
Plasma spraying is the most commonly used thermal spray method for the application of hydroxyapatite (HA, Ca10(PO4)6(OH)2) coatings. In the present study, the HA coatings were plasma spraying deposited onto plates of titanium pre-heated to 20 °C, 300 °C and 550 °C. The obtained HA coatings were investigated by means of X-ray diffraction and scanning electron microscopy. It is found that the coatings, in addition to HA, contain the tetracalcium phosphate (TTCP, (Ca4(PO4)2O) phase (~10%) and a small amount of CaO (<2%). Crystal structure of HA in the coatings is revealed to be distorted. The PO4 tetrahedrons are deformed (Baur distortion coefficient D1(TO) ~0.2). The distances Ca1-O1 and Ca1-O2 are changed as compared to these in stoichiometric hydroxyapatite. These distortions are considered as a result of internal stresses, which are demonstrated in the broadening of peaks on X-ray diffraction pattern of HA. Microstructure of coatings consisting of flattened splats was formed by fully molten particles. The axial base texture was developed in the coatings. Ultrastructure is columnar with a preferred orientation of c-axes of the crystals parallel to the normal of plane coating n. The heating of substrate has a marked effect on the ultrastructure of coatings: the domain size increases from 790 to 1100 Å, the strain Δ decreases from 1.6·10-3 to 1,2·10–3, TTCP content diminishes from 12% to 7%. These results show that the effects due to heating of the substrate may be associated with partial recovery of HA microstructure. 相似文献
11.
《Ceramics International》2020,46(10):16151-16156
Silicon carbide (SiC) particles were utilized to improve the mechanical, thermal and anti-ablative properties of carbon/phenolic (C/Ph) composites. SiC–C/Ph composites were fabricated with different weight percentage of SiC by vacuum impregnation method. The mechanical and thermal properties were characterized by compression tests, thermal conductivity tests, and thermogravimetric analysis; meanwhile, ablation resistance was investigated using plasma wind tunnel tests and scanning electron microscopy. Experimental results showed that 5 wt% SiC modified C/Ph composites owned the optimum properties. Moreover, introducing SiC particles could result in an obvious decrease of compression strength, but an increase of thermal stability, thermal conductivity and anti-ablative performance. Notably, the ablation rate reached its the lowest point at 5% the SiC content in resin matrix composites. 相似文献
12.
M.I. Pérez-Valverde J.J. Gervacio-Arciniega J.M. Siqueiros M.E. Mendoza 《Ceramics International》2019,45(8):9986-9993
A study of the interaction between an inorganic phase, KH2PO4 (KDP) and an organic phase C6H4O2 (BZQ) in composites KDP/BZQ is presented here. Studies by X-ray powder diffraction and Raman spectroscopy confirm the interaction by a variation in the volume of the unit cell and new bands identified corresponding to the formation of new hydrogen bonds between KDP and BZQ in the Raman spectra. Relaxation process and conductivity were studied using an impedance analyzer in a wide frequency range (102–106?Hz) between room temperature and 90?°C allowing seeing the dielectric character of the composites and the proton conductivity behavior. Also the effective piezoelectric coefficient was determined by piezo response microscopy; it was observed a decrement of the KDP coefficient on increasing the concentration of BZQ, probably due to the interaction between them. 相似文献
13.
S. Salman O. Gunduz S. Yilmaz M.L.
veolu Robert L. Snyder S. Agathopoulos F.N. Oktar 《Ceramics International》2009,35(7):2965-2971
This study presents the fabrication and characterization of composite materials of hydroxyapatite and Ti. Hydroxyapatite (HA) powder was obtained from bovine bones (BHA) and human enamel (EHA) via calcination technique. Fine powders of HA were admixed with 5 and 10 wt.% fine powder of metallic Ti. Powder-compacts were sintered at different temperatures between 1000 and 1300 °C. Compression strength, Vickers microhardness and elastic modulus as well as density were measured. SEM and X-ray diffraction studies were also conducted. The experimental results showed that addition of Ti to EHA and BHA decreases the elastic modulus, comparing to samples of pure BHA. The best mechanical properties for BHA–Ti composites were obtained after sintering in the range of 1200–1300 °C and for EHA–Ti composites in the range of 1100–1300 °C. 相似文献
14.
《Ceramics International》2017,43(2):2170-2173
HfB2-x vol%CNTs (x=0, 5, 10, and 15) composites are prepared by spark plasma sintering. The influence of CNTs content and sintering temperature on densification, microstructure and mechanical properties is studied. Compared with pure HfB2 ceramic, the sinterability of HfB2-CNTs composites is remarkably improved by the addition of CNTs. Appropriate addition of CNTs (10 vol%) and sintering temperature (1800 °C) can achieve the highest mechanical properties: the hardness, flexural strength and fracture toughness are measured to be 21.8±0.5 GPa, 894±60 MPa, and 7.8±0.2 MPa m1/2, respectively. This is contributed to the optimal combination of the relative density, grain size and the dispersion of CNTs. The crack deflection, CNTs debonding and pull-out are observed and supposed to exhaust more fracture energy during the fracture process. 相似文献
15.
《Ceramics International》2023,49(8):12570-12584
Ti6Al4V alloy is successfully used as implant material in dental and orthopedic surgeries for years due to its much better compatibility, lower density, corrosion resistance, etc. compared to the other metals. Meantime, modification of the surface of these alloys is needed to enhance material-tissue interaction and osteointegration between the implant and the bone. In this study, Ti6Al4V alloy surfaces were modified by application of RF magnetron sputtering technique and coated with zinc (Zn) doped hydroxyapatite (HAp). The obtained coating was very stable with highly crystalline structure, demonstrated enhanced corrosion resistance, osteointegration and antimicrobial effectiveness against Escherichia coli (E. coli) bacteria. 相似文献
16.
Processing of a natural hydroxyapatite powder: From powder optimization to porous bodies development
M. Lombardi P. PalmeroK. Haberko W. PydaL. Montanaro 《Journal of the European Ceramic Society》2011,31(14):2513-2518
This paper deals with the development of macro-porous components made of a carbonated hydroxyapatite (HAp) nanopowder which was extracted from pig bones. Prior to sintering, the powder was treated at 700 °C for 1 h. During calcination, a partial carbonate decomposition occurred yielding CaO. In order to eliminate this by-product, the calcined HAp was washed in distilled water several times, checking the effect of washings by FT-IR spectroscopy. Then, the thermal stability of the as-calcined and washed powders treated in the range 800-1400 °C was investigated by XRD.After that, macro-porous materials made of washed HAp powder were prepared through a modified gelcasting process, using agar as a natural gelling agent and polyethylene spheres as the pore formers. 相似文献
17.
Nanocrystalline hydroxyapatite doped with aluminium: A potential carrier for biomedical applications
《Ceramics International》2016,42(4):5304-5311
Biocompatible materials based on hydroxyapatite are potentially attractive for a wide range of medical applications. The effect of aluminium substitution on the biocompatibility of hydroxyapatite (HA) under the physiochemical conditions has been investigated. Various samples of aluminium doped hydroxyapatite (Al-HA) with different concentration (0, 0.5, 1.0, 1.5, 2.0, 2.5 mol%) were successfully synthesised by solution combustion method and characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM), and thermal analysis technique. XRD and TEM results reveal uniform and crystalline nature of Al-HA nanoparticles. The biocompatibility of the Al-HA nanoparticles was studied using L929 cell lines by MTT assays up to 24 h. These Al-HA nanoparticles are biocompatible on cell lines L929 and do not have toxic effects for further possible in vivo applications. The results of these studies confirmed the biocompatibility of Al-HA and demonstrated the suitability for biomedical applications. The present work reveals the importance of structural, morphological, biocompatible properties of Al-HA nanoparticles and predicts the suitability for biomedical applications. 相似文献
18.
Young-Mi SoonKwan-Ha Shin Young-Hag Koh Won-Young ChoiHyoun-Ee Kim 《Journal of the European Ceramic Society》2011,31(3):415-419
This paper proposes a novel way of producing aligned porous alumina ceramics with larger dimensions by assembling unidirectionally frozen alumina/camphene bodies, particularly those containing polystyrene (PS) polymer as the binder. The compressive strength of the samples sintered at 1450 °C for 3 h increased remarkably from 2 ± 0.1 to 16 ± 2 MPa with increasing PS content from 5 to 20 vol.% due to the prevention of cracks generally caused by drying shrinkage. In addition, frozen samples with a PS content of 20 vol.% could be assembled into larger dimensions without difficulty. The height of the assembled sample produced with a lamination number of 5 could be increased to ∼24 mm without a severe decrease in compressive strength (16 ± 3 MPa at a porosity of ∼79 vol.%) due to the maintenance of an aligned porous structure with good interfacial bonding between the laminations. 相似文献
19.
Thermoelectric power of carbon fiber reinforced cement composites was firstly enhanced efficiently by metallic oxide microparticles in the cement matrix. The absolute Seebeck coefficient of these composites increased steadily with increasing metallic oxide content and achieved 4–5 folds of the original one. The largest absolute thermoelectric power of +100.28 µV/°C was obtained for the composite with 5.0 wt% Bi2O3 microparticles. The carrier scattering of the interface between oxide microparticles and cement matrix is probably attributed to the Seebeck effect enhancement. 相似文献
20.
Michal Bartmanski Andrzej Zielinski Beata Majkowska-Marzec Gabriel Strugala 《Ceramics International》2018,44(16):19236-19246
The purpose of the research was to establish the influence of the solution composition and the electrophoretic deposition voltage on the coating homogeneity and thickness, nanohardness, adhesion, corrosion resistance and wettability. The Ti13Zr13Nb alloy was coated by the electrophoretic technique with hydroxyapatite in a solution containing 0.1, 0.2 or 0.5?g nanoHAp in 100?mL of suspension and at voltage 15, 30 or 50?V. The scanning electron and atomic force microscopies, polarization curves technique for corrosion assessment, nanoindentation and nanoscratch tests, and measurements of contact angle in simulated body fluid were performed. The obtained results revealed the complex and interrelated effects of both process determinants on the structure and properties of hydroxyapatite coatings, which were attributed to the role of the size, shape and content in suspension of hydroxyapatite particles. 相似文献