首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2020,46(8):11474-11483
High permittivity Ba4(Pr1-xSmx)28/3Ti18-yAl4y/3O54(0.4≤x ≤ 0.7, 0≤y ≤ 1.5) ceramics were synthesized using a standard solid-state method. The effects of Sm3+ substitution into the A-site and Sm3+/Al3+ cosubstitution into the A/B-sites on the microstructure, crystal structure, Raman spectra, infrared reflectivity (IR) spectra and dielectric characteristics were investigated in a Ba4Pr28/3Ti18O54 solid solution. In the ceramic samples of Ba4(Pr1-xSmx)28/3Ti18O54(0.4≤x ≤ 0.7), Sm3+ partial substitution for Pr3+ could improve the quality factor (Qf) value and reduce the TCF value. Nevertheless, the quality factor (Qf~10,000GHz) needed further improvement and the TCF values (+12.3~+35.4 ppm/°C) were still too large. Therefore, Al3+ was introduced for further optimization of the TCF values and Qf values of the Ba4(Pr1-xSmx)28/3Ti18O54 ceramics. Sm/Al cosubstitution led to a good combination of high εr (εr ≥ 70), high Qf (Qf ≥ 12,000 GHz), and near-zero TCF (−10 < TCF < +10 ppm/°C) in a wide range (0.4≤x ≤ 0.7). Infrared reflectivity (IR) spectra indicated that A-TiO6 vibration modes gave the primary contribution rather than Ti–O bending and stretching modes. The decrease in the degree of B-site cations order could be confirmed by Raman spectra. XPS results demonstrated that the improvement of quality factor (Qf) value was strongly related to the suppression of Ti3+. Excellent dielectric properties were achieved in Ba4(Pr1-xSmx)28/3Ti18-yAl4y/3O54 microwave ceramics with x = 0.5 and y = 1.25: εr = 72.5, Qf = 13,900GHz, TCF = +1.3 ppm/°C.  相似文献   

2.
Utilizing different rare-earth cations R3+ to the Ba6  3xR8 + 2xTi18O54 compounds is one of effective route to tailor the dielectric constant, quality factor and temperature coefficient of frequency. In this study, densification, microstructural evolution, and microwave dielectric properties of Ba6  3x(Sm1  yNdy)8 + 2xTi18O54 compound, with x ranging from 0.3 to 0.7; and y from 0 to 1.00, were investigated. The ceramics with x = 0.7 [Ba3.9(Sm1  yNdy)9.4Ti18O54] has a higher densification compared with others, due to the formation of vacancy, in the perovskite-like tetragonal cavity of the tungsten bronze-type framework structure. Differential thermal analysis and density results show that the densification of Ba6  3x(SmyNd1  y)8 + 2xTi18O54 ceramics during sintering is primarily resulting from the solid state sintering process. The phase homogeneity for the Ba6  3x(Sm0.5Ndo.5)8 + 2xTi18O54 system is at least extended in the range of x between 0.3 and 0.7. Combining different rare-earth cations appears not alter the single phase range in tungsten bronze-type Ba6  3xR8 + 2xTi18O54 ceramics. The size of the columnar-grain in the microstructure increases with increasing the Nd/Sm ratio as well as the x value. Dielectric constant changes from 91.0 to 84.2 as the x increases from 0.3 to 0.7. Variation of the Nd/Sm ratio allows one to control the τf value to the nearly 0 ppm/°C.  相似文献   

3.
《Ceramics International》2016,42(13):14749-14753
Sm2(Zr1–xTix)2O7 (0≤x≤0.15) ceramics have been fabricated by pressureless-sintering method at 1973 K for 10 h in air. The influence of TiO2 doping on microstructure and thermo-optical properties of Sm2(Zr1–xTix)2O7 ceramics is investigated by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The partial substitution of Ti4+ for Zr4+ results in a significant increase in emissivity at low wavelengths contrasted with undoped Sm2Zr2O7. Sm2(Zr0.85Ti0.15)2O7 ceramic exhibits a high emissivity of above 0.70 at 1073 K in a wavelength range of 3–16 µm, where the highest value at this temperature is more than 0.90 especially in the wavelength range of 9–14 µm. FT-IR spectra and optical absorption spectra unveil the mechanisms of enhanced emissivity in Sm2(Zr1–xTix)2O7 (0.05≤x≤0.15) ceramics in the intermediate infrared range, especially at the wavelengths of 3–8 µm, due to Ti4+ ion substitution for Zr4+ ion.  相似文献   

4.
《应用陶瓷进展》2013,112(1):12-17
Abstract

Abstract

(YbxSm1-x)2Zr2O7 (0<x<1·0) ceramic powders were synthesised with chemical coprecipitation and calcination method. Thermal decomposition behaviour of precipitates was studied by differential scanning calorimetry-thermogravimetry. The powders were characterised by X-ray diffractometry, scanning electron microscopy and transmission electron microscopy with energy dispersive spectroscopy. The synthesised powders have a particle size of about 100?nm, and exhibit to a certain extent agglomeration. The sintering behaviour of (YbxSm1-x)2Zr2O7 powders was studied by pressureless sintering method at 1550-1700°C for 10?h in air. The relative densities of (YbxSm1-x)2Zr2O7 ceramics increase with increasing sintering temperature, and reach above 95% when sintered at 1700°C for 10?h in air. Sm2Zr2O7 and (Yb0·1Sm0·9)2Zr2O7 ceramics have a pyrochlore structure; however, (YbxSm1-x)2Zr2O7 (0·3<x<1·0) ceramics exhibit a defective fluorite type structure.  相似文献   

5.
《Ceramics International》2022,48(13):18730-18738
A series of new negative temperature coefficient (NTC) thermal materials based on (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 (0.00 ≤ x ≤ 0.20) ceramics were synthesized by a solid-state method. X-ray diffraction, scanning electron microscope and X-ray photoelectron spectroscopy were used to demonstrate the crystal structure, morphology, and composition of the (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics, which were composed of solid solution based on the BaTiO3 phase. The average grain size of doped ceramic samples experienced the process of first decreasing and then increasing. The doping of Ce has reduced the sintering temperature. The temperature-dependent resistance analysis revealed that with the change of doping amount x, the thermal constant B300/1200 (1.21 × 104–1.13 × 104 K) and the activation energy Ea300/1200 (0.9777–1.0471eV) was initially increased to maximum values at x = 0.05, followed by the decreasing when x > 0.05. It has been established that the concentration of oxygen vacancies is affected by the transition between Ce4+ and Ce3+ provided by high levels of Ce doping. (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics exhibited excellent negative temperature characteristics in the range of 300–1200 °C. Moreover, the temperature resistance linearity was improved after samples were aged. Hence, the (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics were regarded as a promising material for high-temperature NTC thermistors in a wide temperature range.  相似文献   

6.
Ba0.85Ca0.15(Ti0.9Zr0.1)1-xFexO3 (x = 0, 0.5, and 1%) ceramics were studied for piezocatalysis, photocatalysis, and pyrocatalysis using dye degradation in the simulated wastewater. The effect of electrical poling was also performed and found a significant impact of poling on all three catalytic reactions. Fe decreased the optical bandgap of Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZTO) to the visible region. Bandgap for x = 0, 0.005, and 0.01 was found to be 3.14 eV, 2.75 eV, and 2.61 eV, respectively. Interestingly, visible light photocatalytic activity was observed after Fe inclusion in BCZTO lattice. These compositions have also demonstrated dye degradation under ultrasonication (piezocatalytsis) and during temporal temperature change (pyrocatalysis). Results indicate promising multicatalysis in BCZTO ceramics which can be tuned using Fe substitution.  相似文献   

7.
《Ceramics International》2021,47(20):28487-28492
In this work, the microwave dielectric properties of Ba4(Nd1-yBiy)28/3Ti18-x(Al1/2Ta1/2)xO54(0≤x≤2, 0.05≤y≤0.2) ceramics co-substituted by A/B-site were studied. Firstly, (Al1/2Ta1/2)4+ was used for substitution at B-site. At 0≤x≤1.5, the above mentioned ceramic was found to exist in single-phase tungsten bronze structure, but at x = 2.0, the secondary phase appeared. Although the dielectric constant decreased by doping the (Al1/2Ta1/2)4+, but the quality factor was observed to improve by 40% and the temperature coefficient of resonant frequency decreased by 75%. Based on the above results, Bi3+ was introduced to Ba4Nd28/3Ti17(Al1/2Ta1/2)O54. The introduction of Bi3+ reduced the sintering temperature, greatly improved the dielectric constant, and ultimately decreased the temperature coefficient of resonant frequency, but it led to deterioration of quality factor. At last, with appropriate site-substitution content control (x = 1.0,y = 0.15), excellent comprehensive properties (εr = 89.0, Q × f = 5844 GHz @ 5.89 GHz,TCF = +8.7 ppm/°C) were obtained for the samples sintered at 1325 °C for 4 h.  相似文献   

8.
《Ceramics International》2019,45(13):16130-16137
In this study, the (Sm1-xGdx)2(Hf1-xTix)2O7 (0 ≤ x ≤ 0.2) ceramic coatings were fabricated by atmospheric plasma spraying. The chemical compositions, morphologies and thermo-optical properties of the samples were systemically investigated. It can be found that the infrared emissivity of (Sm1-xGdx)2(Hf1-xTix)2O7 ceramic coatings at the wavelength range of 0.76–15 μm increased with the increasing content of Gd3+ and Ti4+. The (Sm0.8Gd0.2)2(Hf0.8Ti0.2)2O7 ceramic coating exhibited the highest infrared emissivity among the coatings, which was 0.773 and 0.816 at room temperature and 1400 °C, respectively. The mechanism of the increasing infrared emissivity was attributed to the Gd3+ and Ti4+ co-doping can improve the free carrier concentration and the frequency and mode of the lattice vibration. Moreover, the (Sm0.8Gd0.2)2(Hf0.8Ti0.2)2O7 ceramic coating possessed good thermal resistance, which did not show obvious change in the phase, surface morphology and infrared emissivity after 60 h calcination at 1400 °C.  相似文献   

9.
《Ceramics International》2022,48(22):33563-33570
Lanthanum hafnate (La2Hf2O7) with a pyrochlore structure has excellent high temperature stability and low thermal conductivity, which is promising for thermal/environmental barrier coatings (T/EBCs) applications. To reduce its thermal expansion coefficient (TEC) so as to better match SiCf/SiC composites, a smaller tetravalent dopant Ti4+ has been introduced in the Hf-sites to form La2(Hf1-xTix)2O7 (x ≤ 0.20). The phase composition and microstructure confirms that La2(Hf1-xTix)2O7 solid solutions possess a pure pyrochlore structure. With an increase of x, their TECs are decreasing consistently, whilst their thermal conductivities of La2(Hf1-xTix)2O7 are slightly increasing at high temperature but still much lower than those of meta-stable yttria partially stabilized zirconia, both of which are attributing to an increase of elastic modulus after Ti4+ doping on Hf-sites. The extremely excellent high temperature stability, relatively low thermal conductivities and low TECs suggest that La2(Hf1-xTix)2O7 is a prospective candidate material for T/EBC applications.  相似文献   

10.
(Ba0.6Sr0.4)(Ti1−xZrx)O3 (0.05  x  0.3) ferroelectric materials have cubic perovskite structure and show paraelectric properties at room temperature. Curie point shifted to a negative value as increasing Zr content in (Ba0.6Sr0.4)(Ti1−xZrx)O3 system. When Zr substituted 0.1 mol, the dielectric constant, dielectric loss, tunability, Curie point and FOM were 4500, 0.0005, 63%, −1.6 °C and 1260, respectively. This composition shows excellent microwave dielectric properties than those of (Ba0.6Sr0.4)TiO3 ferroelectrics, which are limelight materials for tunable devices such as varactors, phase shifters and frequency agile filters, etc.  相似文献   

11.
Good thermal stability in lead-free BaTiO3 ceramics is important for their applications above room temperature. In this study, thermal stable piezoelectricity in lead-free (Ba,Ca)(Ti,Zr)O3 ceramics was enhanced by tailoring their phase transition behaviors. Comparison between (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.65Ca0.35)TiO3 and (1-y)Ba(Ti0.8Zr0.2)O3-y(Ba0.95Ca0.05)TiO3 revealed that latter system at y?=?0.80 had much better thermal stable piezoelectric coefficient than the former at x?=?0.45. Both systems crystalized in tetragonal to orthorhombic phase boundary at room temperature. The phase transition temperature and degree of diffusion were adjusted by Ca and Zr ions contents and demonstrated great influence on temperature dependent dielectric permittivity, hysteresis loops, and in-situ domain structures. The improved thermal stability of (1-y)Ba(Ti0.8Zr0.2)O3-y(Ba0.95Ca0.05)TiO3 prepared at y?=?0.80 was linked to its higher paraelectric to ferroelectric phase transition temperature (Tm?=?115.7?°C) and less degree of diffusion (degree of diffusion constant γ?=?1.35). By comparison, (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.65Ca0.35)TiO3 prepared at x?=?0.45 revealed Tm?=?81.3?°C and γ?=?1.65. Overall, these findings look promising for future stimulation of phase transition behaviors and design of piezoelectric materials with good thermal stabilities.  相似文献   

12.
Tungstenbronze type like Ba6−3xR8+2xTi18O54 (R = Sm or Nd) dielectric ceramics reveal high quality factor Q·f as well as high dielectric constant ɛr. We have investigated the effect of Sr substitution for Ba ions on the microwave dielectric properties of the compounds. (Ba1−αSrα)6−3xR8+2xTi18O54 (R = Sm or Nd) ceramics were prepared in the composition ranges of x = 0–0.2 and α = 0–0.312 and the microwave dielectric properties were investigated. (Ba1−αSrα)6−3xSm8+2xTi18O54, where x = 0.1 and α = 0.298, and (Ba1−αSrα)6−3xNd8+2xTi18O54, where x = 0.2, α = 0.296 revealed remarkably higher Q·f value among the solid solutions, indicating that Q·f increased with substituting Sr ions into Ba ions at the rhombic A1-site. This fact suggests that relaxation of local distortions at the A1-sites is closely related to improvement of Q·f.  相似文献   

13.
Pyrochlore structure material (A2B2O7) has gained interest in diverse applications like catalysis, nuclear waste encapsulation, sensors, and various electronic devices due to the unique crystal structure, electrical property, and thermal stability. This review deals with the ionic/electronic conductivity of numerous pyrochlore structure materials (titanates, zirconates, hafnates, stannates, niobates, ruthenates, and tantalite based pyrochlore) as electrolyte and electrode materials for solid oxide fuel cells (SOFCs). The impact of cation radius ratio (rA/rB) on the lattice constant and oxygen ‘x’ parameter of different pyrochlore structure materials obtained by various synthesis methods are reported. Higher ionic conductivity is essential for better ion transport in an electrolyte, and mixed ionic and electronic conductivity in electrode is essential for attaining higher efficiency in a typical SOFC. GdxTi2O7-δ, Gd2-xCaxTi2O7-δ, Nd2-yGdyZr2O7, Y2Zr2O7, Y2Zr2-xMnxO7-δ, SmDy1-xMgxZr2O7-x/2, Gd2-xCaxTi2O7-δ pyrochlore are reported as electrolytes for fuel cell applications. Some pyrochlore material (La2-xCaxZr2O7, Sm2-xMxTi2O7 (M = Mg, Co, and Ni) pyrochlore) shows protonic conductivity at lower temperatures and ionic conductivity at higher temperature condition. Also, the mixed ionic-electronic conductivity behavior is reported in electrode materials for SOFC such as R2MnTiO7 (R = Er and Y), R2MnRuO7 (R = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y), R2Ru2O7 (R = Bi, Pb and Y), Y2-xPrxRu2O7, Ni-(Gd0.9Ca0.1)2Ti2O7-δ, (Gd0.9Ca0.1)2Ti2O7-δ, Gd2(Ti0.8Ru0.2)2O7-δ, (Sm0.9Ca0.1)2Ti2O7-δ and (Y0.9Ca0.1)2Ti2O7-δ pyrochlore. The detailed study of the electronic behavior of these pyrochlore system confirms the necessity of defect structure with high oxygen mobility, lower activation energy, ionic radii ratio criterion should satisfy, and possess notable ion-ion interaction. Ionic conductivity in pyrochlore is increased by enhancing the oxygen migration through 48f-48f site with the formation of oxygen vacancy. Vacancy formation can be achieved by adding a suitable dopant that creates oxygen vacancy by charge compensation mechanism or as anion Frenkel defects. Similarly, the electrical conductivity is improved while adding suitable dopant (Ce, Pr, Ru, etc.) due to disordered structure and anti-Frenkel defect formation which leads to oxygen vacancy formation and thus improves conductivity.  相似文献   

14.
《Ceramics International》2020,46(5):6212-6216
0.02Pb(Sb1/2Nb1/2)O3-0.98Pb1-xBax(Zr0.53Ti0.47)O3 (PSN-PBxZT) ceramics with high Curie temperature and high piezoelectric properties were prepared by traditional solid state reaction measurement to meet the requirements for high temperature applications, and the crystal structure, dielectric, piezoelectric and ferroelectric properties were investigated. All the samples show a tetragonal crystal structure at room temperature and there was no noticeable change with the increasing of Ba2+ content. Doping of Ba2+ markedly improved piezoelectric properties of PSN-PZT, the maximum d33~560 pC/N, Tc ~317 °C at x = 0.05. Their outstanding piezoelectric properties will drive the development of high temperature industrial applications.  相似文献   

15.
To investigate the effects of Yb3+ doping on phase structure, thermal conductivity and fracture toughness of bulk Nd2Zr2O7, a series of (Nd1-xYbx)2Zr2O7 (x?=?0, 0.2, 0.4, 0.6, 0.8, 1.0) ceramics were synthesized using a solid-state reaction sintering method at 1600?°C for 10?h. The phase structures were sensitive to the Yb3+ content. With increasing doping concentration, a pyrochlore-fluorite transformation of (Nd1-xYbx)2Zr2O7 ceramics occurred. Meanwhile, the ordering degree of crystal structure decreased. The substitution mechanism of Yb3+ doping was confirmed by analyzing the lattice parameter variation and chemical bond of bulk ceramics. The thermal conductivities of (Nd1-xYbx)2Zr2O7 ceramics decreased first and then increased with the increase of Yb3+ content. The lowest thermal conductivity of approximately 1.2?W?m?1 K?1 at 800?°C was attained at x?=?0.4, around 20% lower than that of pure Nd2Zr2O7. Besides, the fracture toughness reached a maximum value of ~1.59?MPa?m1/2 at x?=?0.8 but decreased with further increasing Yb3+ doping concentration. The mechanism for the change of fracture toughness was discussed to result from the lattice distortion and structure disorder caused by Yb3+ doping.  相似文献   

16.
Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were prepared by the conventional solid-state reaction method. The phase composition, sintering characteristics, microstructure and dielectric properties of Ti4+ replacement by Nb5+ in the formed solid solution Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were systematically studied. The structural variations and influence of Nb5+ doping in Mg(Ti1-xNbx)O3 were also systematically investigated by X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction and its Rietveld refinement results confirmed that Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics crystallised into an ilmenite-type with R-3 (148) space group. The replacement of the low valence Ti4+ by the high valence Nb5+ can improve the dielectric properties of Mg(Ti1-xNbx)O3 (x = 0–0.09). This paper also studied the different sintering temperatures for Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics. The obtained results proved that 1350 °C is the best sintering temperature. The permittivity and Q × f initially increased and then decreased mainly due to the effects of porosity caused by the sintering temperature and the doping amount of Nb2O5, respectively. Furthermore, the increased Q × f is correlated to the increase in Ti–O bond strength as confirmed by Raman spectroscopy, and the electrons generated by the oxygen vacancies will be compensated by Nb5+ to a certain extent to suppress Ti4+ to Ti3+, which was confirmed by XPS. The increase in τf from ?47 ppm/°C to ?40.1 ppm/°C is due to the increment in cell polarisability. Another reason for the increased τf is the reduction in the distortion degree of the [TiO6] octahedral, which was also confirmed by Raman spectroscopy. Mg(Ti0.95Nb0.05)O3 ceramics sintered at 1350 °C for 2 h possessed excellent microwave dielectric properties of εr = 18.12, Q × f = 163618 GHz and τf = ?40.1 ppm/°C.  相似文献   

17.
《Ceramics International》2023,49(12):19682-19690
Herein, the xBi(Zn0.5Ti0.5)O3-(1-x) (Ba0.5Sr0.5)TiO3 (x = 0.05, 0.10, 0.15, 0.20) novel negative temperature coefficient (NTC) ceramic materials were fabricated by solid-state method. X-ray diffraction revealed that xBi(Zn0·5Ti0.5)O3-(1-x) (Ba0.5Sr0.5)TiO3 successfully formed solid solution. The UV–vis diffuse spectra of the samples indicate that the band gap increases with the increasing Bi(Zn0·5Ti0.5)O3 content. The resistance temperature curve showed that with the increase of Bi(Zn0·5Ti0.5)O3 content, the resistivity ρ of the ceramics at 400 °C increased from 5.96 × 106 to 2.67 × 107 Ω cm, as well as an increase in the B400/800 from 12374.6 to 13469.1 K. The enhanced resistivity is attributed to the increased band gap and reduced carrier pairs caused by the Bi(Zn0.5Ti0.5)O3 modification. The impedance data indicates that the conduction process is activated by thermal. The ceramic samples exhibit the excellent NTC characteristics over a range of 400 °C–1000 °C. Hence, the xBi(Zn0.5Ti0.5)O3-(1-x) (Ba0.5Sr0.5)TiO3 ceramics have the potential to become high temperature NTC ceramics that can operate in a wide temperature range.  相似文献   

18.
《Ceramics International》2022,48(6):7918-7925
Ti-bearing electric furnace smelting slag produced from direct reduction and electric furnace smelting process of vanadium titanomagnetite ore, contains a high TiO2 content of 40–55 wt%. While a mass of Mg, Al, Ca and Si are closely mixed with Ti in the slag, which greatly limits the recovery of Ti resource from the slag. In this work, the replacement behavior of Ti and Mg in MgxTi3-xO5 was studied, and selective separation of various MgxTi3-xO5 phases from Ti-bearing electric furnace smelting slag was conducted via super-gravity. It was found that Mg could replace Ti in Ti3O5 and form the MgxTi3-xO5, and increasing of cooling rate greatly limited the doping of Mg into MgxTi3-xO5, the MgxTi3-xO5 was transformed from (MgTi2)O5 to (Mg0.9Ti2.1)O5, (Mg0.75Ti2.25)O5 and (Mg0.6Ti2.4)O5 respectively. On this basis, various MgxTi3-xO5 (x = 1, 0.9, 0.75, 0.6) phases were selectively separated from the smelting slag via super-gravity, where the mass fraction of TiO2 was increased from 78.69 to 90.32 wt% while that of MgO was decreased from 13.56 to 6.98 wt% with the increase of Ti/Mg ratio in MgxTi3-xO5. Moreover, the replacement mechanism of Mg and Ti was confirmed from characterization of crystal structure and lattice parameter of various separated high-purity MgxTi3-xO5 crystals.  相似文献   

19.
The phase transition behavior and piezoelectric properties of (Ba1?xCax)(Zr0.1Ti0.9)O3 and (Ba0.85Ca0.15)(ZryTi1?y)O3 ceramics were investigated in this work to find out the potential factors contributing to large piezoelectricity. It was found that the morphotropic phase boundary (MPB) of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics was closely related to the presence of an intermediate phase (considered as orthorhombic phase in this work) between rhombohedral (R) and tetragonal (T) phases at a narrow region, which could be carefully adjusted by the temperature and contents of Ca and Zr in the composition. In addition, the maximum piezoelectric and electromechanical coupling coefficients (with d33 = 572 pC/N and kp = 0.57) were observed near the MPB region close to T phase side, which might be intimately related to the presence of the intermediate phase. This investigation yielded a new sight to understand the mechanism of enhanced piezoelectricity near the MPB.  相似文献   

20.
《Ceramics International》2020,46(6):7198-7203
To investigate the effect of Sm doping on the electrical properties of Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) (x = 40, 50, 60) ceramics, three Sm-modified ceramics were prepared using the conventional solid-state reaction method. Related electrical measurements, including ferroelectric and dielectric investigations and impedance spectroscopy, were recorded for these ceramics. It was found that a tilted morphotropic phase boundary resulted from the addition of Sm, which induced the best piezoelectric properties and insulating behaviour in the Sm-BZT-60BCT sample. An abnormal P-E loop shrinkage appeared in the Sm-BZT-50BCT sample but not in the other two samples. This could be attributable to the different electronegativities between Ca2+ and Ba2+ and between Zr4+ and Ti4+, whose contents are different in varied samples and have an effect on defect-dipole alignment as well as spontaneous polarization. The activation energies for the bulk conductivity in the three composites were calculated to be 0.28 ± 0.01, 0.08 ± 0.01, and 0.36 ± 0.01 eV, confirming the existence of oxygen vacancies in our samples. The Sm dopant is responsible for the oxygen vacancies. This also leads to an increased Curie temperature in the three composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号