首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
《Ceramics International》2017,43(8):6554-6562
In order to improve the electrochemical performance of lithium titanium oxide, Li4Ti5O12 (LTO), for the use in the lithium-ion capacitors (LICs) application, LTO/graphene composites were synthesized through a solid state reaction. The composite exhibited an interwoven structure with LTO particles dispersed into graphene nanosheets network rather than an agglomerated state pristine LTO particles. It was found that there is an optimum percentage of graphene additives for the formation of pure LTO phase during the solid state synthesis of LTO/graphene composite. The effect of graphene nanosheets addition on electrochemical performance of LTO was investigated by a systemic characterization of galvanostatic cycling in lithium and lithium-ion cell configuration. The optimized composite exhibited a decreased polarization upon cycling and delivered a specific capacity of 173 mA h g−1 at 0.1 C and a well maintained capacity of 65 mA h g−1 even at 20 C. The energy density of 14 Wh kg−1 at a power density of 2700 W kg−1 was exhibited by a LIC full cell with a balanced mass ratio of anode to cathode along with a superior capacitance retention of 97% after 3000 cycles at a current density of 0.4 A g−1. This boost in reversible capacity, rate capability and cycling performance was attributed to a synergistic effect of graphene nanosheets, which provided a short lithium ion diffusion path as well as facile electron conduction channels.  相似文献   

2.
Lithium-ion capacitors (LICs) composed of battery-type anodes with large energy densities and capacitor-type cathodes with high power densities are considered as appealing energy-storage devices. Here, a LIC with good performance is constructed using active carbon (AC) as the cathode and Li1.95La0.05ZnTi3O8 (LL5ZTO) as the anode. LL5ZTO doped with La is synthesized via a one-step solid-state route. The kinetics and structural stability of LZTO are enhanced by La-doping. Thus, LL5ZTO exhibits good Li-storage performance. The discharge specific capacity reaches 182.6 mAh g?1 at 3 A g?1 (120th cycle) for LL5ZTO. The LIC based on the LL5ZTO anode and the AC cathode delivers an energy density of 59.72 Wh kg?1 at 846.4 W kg?1, and a high power density of 8771 W kg?1 at 19.49 Wh kg?1. Furthermore, the capacity retention is over 90% after 3000 cycles for the LIC at 2 A g?1. The good electrochemical performance indicates that the constructed LIC is expected to use in advanced energy storage devices.  相似文献   

3.
In this paper, Li4Ti5O12 (LTO) hollow microspheres with the shell consisting of nanosheets have been synthesized via a hydrothermal route and following calcination. Because of the favorable transport properties of this hollow structure, it is the rate performance at high current densities which is exceptional. When the LTO hollow microspheres were used as the anode material in lithium ion battery, they exhibited superior rate performance and high capacity even at a very high rate (131 mAh g−1 at 50 C).  相似文献   

4.
《Ceramics International》2016,42(14):15464-15470
The TiN coated Li4Ti5O12 (LTO) submicrospheres with high electrochemical performance as anode materials for lithium-ion battery were synthesized successfully by solvothermal method and subsequent nitridation process in the presence of ammonia. The XRD results revealed that the crystal structure of LTO did not change after thermal nitridation process. The submicrospheres morphology of LTO and TiN film on the surface of LTO submicrospheres were characterized by FESEM and HRTEM, respectively. XPS result confirmed that a small amount of Ti changed from Ti4+ to Ti3+ after nitridation process, which will increase the electronic conductivity of LTO. Electrochemical results showed that electrochemical performance of TiN coated LTO anode materials compared favorably with that of pure LTO. Also its rate capability and cycling performance were apparently superior to those of pure LTO. The reversible capacity of TiN-LTO is 105.2 mA h g−1 at a current density of 10 C after 100 cycles and maintain 92.9% of its initial discharge capacity, while that of pure LTO is only 83.6 mA h g−1 with a capacity retention of 90.3%. Even at 20 C, the discharge capacity of TiN coated LTO sample is 101.3 mA h g−1, compared with 77.3 mA h g−1 for pristine LTO in the potential range 1.0–2.5 V (vs. Li/Li+).  相似文献   

5.
《Ceramics International》2020,46(17):26923-26935
In this study, spinel lithium titanate (Li4Ti5O12, LTO) anode materials were synthesized from two titanium sources (P25 TiO2, 100% anatase TiO2) using a spray-drying method and subsequent calcination at various temperatures. The electrochemical performance of both a Li/LTO half cell and a LiNi0.5Mn1.5O4/LTO (LNMO/LTO) full cell were investigated. The electrochemical performance of the LTO material prepared from P25 TiO2 was superior to that of the LTO prepared from 100% anatase TiO2. After modification of LTO material with AlPO4, the LTO coated with 2 wt% of AlPO4 (denoted “2%AlPO4-LTO”) provided the best performances. The specific (delithiation) capacities of the 2%AlPO4-LTO anode material was 189.7 mA h g−1 at 0.1C/0.1C, 184.5 mA h g−1 at 1C/1C, 178.8 mA h g−1 at 5C/5C, and 173.1 mA h g−1 at 10C/10C. From long-term cycling stability tests, the specific capacity at the first cycle and the capacity retention after cycling were 185.5 mA h g−1 and 98.06%, respectively, after 200 cycles at 1C/1C and 182.1 mA h g−1 and 99.18%, respectively, after 100 cycles at 1C/10C. For the LNMO/2%AlPO4-LTO full cell, the average specific capacity (delithiation) and coulombic efficiency after the first five cycles were 164.8 mA h g−1 and 93.30%, respectively, at 0.1C/0.1C. The specific capacities at higher C-rates were 156.1 mA h g−1 at 0.2C/0.2C, 135.7 mA h g−1 at 1C/1C, 97.5 mA h g−1 at 3C/3C, and 46.5 mA h g−1 at 5C/5C. After twenty-five cycles, the C-rate returned to 1C/1C and the specific capacity, coulombic efficiency, and capacity retention were maintained at 134.1 mA h g−1, 99.17%, and 98.82%, respectively.  相似文献   

6.
Surface doping of Li4Ti5O12 (LTO) with Ti3+ ions is an effective way to enhance its electrochemical properties for lithium ion batteries (LIBs). Herein, a molten salt approach was reported to synthesize Ti3+ self-doped LTO powder. The reaction mechanism and the role of molten salt for the synthesis have been systemically discussed. Finally, electrochemical performance of the LTO powder was preliminarily evaluated as anode material of LIBs. The molten salt accelerated the mass transportation for the formation of LTO by transferring a solid diffusion to the diffusion of ions in a liquid media. Self-doping of Ti3+ ions on the surface of LTO particles was achieved by controlling equilibriums of chemical reactions in the reactor. Electrochemical performance of the LTO powders was effectively promoted by doping Ti3+ ions on the surface. The discharge capacity of the Ti3+ self-doped LTO powder prepared at 850°C was 171 mAhg−1, and the capacity dacayed 9.9% after 200 cycles at a rate of 0.5 C.  相似文献   

7.
Carbon nanotube-encapsulated SnO2 (SnO2@CNT) core–shell composite anode materials are prepared by chemical activation of carbon nanotubes (CNTs) and wet chemical filling. The results of X-ray diffraction and transmission electron microscopy measurements indicate that SnO2 is filled into the interior hollow core of CNTs and exists as small nanoparticles with diameter of about 6 nm. The SnO2@CNT composites exhibit enhanced electrochemical performance at various current densities when used as the anode material for lithium-ion batteries. At 0.2 mA cm?2 (0.1C), the sample containing wt. 65% of SnO2 displays a reversible specific capacity of 829.5 mAh g?1 and maintains 627.8 mAh g?1 after 50 cycles. When the current density is 1.0, 2.0, and 4.0 mA cm?2 (about 0.5, 1.0, and 2.0C), the composite electrode still exhibits capacity retention of 563, 507 and 380 mAh g?1, respectively. The capacity retention of our SnO2@CNT composites is much higher than previously reported values for a SnO2/CNT composite with the same filling yield. The excellent lithium storage and rate capacity performance of SnO2@CNT core–shell composites make it a promising anode material for lithium-ion batteries.  相似文献   

8.
《Ceramics International》2017,43(2):1650-1656
To improve the electrochemical and anti flatulence performance of Li4Ti5O12, Ag modified Li4Ti5O12 (LTO) with high electrochemical performance as anode materials for lithium-ion battery was synthesized successfully by two-step solid phase sintering and subsequent electroless plating process in the presence of silver. The effect of Ag modification on the physical and electrochemical properties were investigated by the extensive material characterization of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM). The results showed that the samples possessed single spinel structure, it could be observed that the LTO/Ag composite and the pure LTO shared the same vibration frequencies, which indicated that the crystal structure of LTO didn’t change after electroless plating process, and the particles were uniformly and regularly shaped within 0.5–1.0 µm. Electrochemical performance of the samples were evaluated by the charging and discharging, cyclic voltammetry, electrochemical impedance spectroscopy, cycling and rate tests. It's obvious that the LTO/Ag composite prepared at the 10 min of electroless plating showed the highest performance with capacitance of 182.3 mA h/g at 0.2 C current rates. What's more, the LTO/Ag composites still maintained 92% of its initial capacity even after 50 charge/discharge cycles. Modification of appropriate Ag not only benefits the reversible intercalation and deintercalation of Li+, but also improves the diffusion coefficient of lithium ion. Besides, modification of appropriate Ag lower electrochemical polarization leads to higher conductivity and cycle performance of LTO, which is consistent with the results of the best reversible capacities.  相似文献   

9.
A flexible, free-standing composite anode with Li4Ti5O12 nanosheet arrays anchoring on plain-weaved carbon fiber cloth (LTO@CC) is prepared by a hydrothermal and post-annealing process assisted by a TiO2 seed layer. The LTO@CC anode free from polymeric binder and conducting agent exhibited much higher lithium storage capacity and cycling stability than the conventional slurry-processed electrode using the dandelion-like Li4Ti5O12 microspheres prepared by the same hydrothermal process. A high specific capacity of 128.8 mA h g?1 was obtained at a current rate of 30 C (1 C = 175 mA g?1), and almost negligible capacity loses was observed when the cell was cycled at 10, 20 and 30 C each for 100 cycles. The carbon fiber matrix contributed to Li storage at low current rate, but the LTO nanosheet arrays have played the dominant role on the excellent rate capability. The improved electrochemical performance can be attributed to the synergetic effect between the hierarchical Li4Ti5O12 nanosheet arrays and the carbon fiber matrix, which integrated short Li+ diffusion length, three-dimensional conductive architecture and well preserved structural integrity during the high rate and repeated charge-discharge measurements.  相似文献   

10.
Spinel structured LTO (lithium titanium oxide), Li4Ti5O12, materials have gained renewed interest in electrodes for lithium-ion batteries. Powder precursors were mixed by HEBM (high energy-ball mill) and Li4Ti5O12 was formed by calcinations at high temperature. The influence of excess Li on the structural characteristics of lithium titanium oxide was investigated. According to the XRD and SEM analysis, uniformly distributed Li4Ti5O12 particles were synthesized. Li4Ti5O12 had different characteristics due to the precursor sizes and the heat treatment temperatures. LTO from micro TiO2 showed the highest discharge capacity at 750 °C for 12 h. LTO from nano TiO2 showed the highest discharge capacity at 700 °C for 12 h. Lithium-ion battery with Li4Ti5O12 anode and lithium metal cathode showed the capacity of 170 mAh/g at 1.0–3.0 V.  相似文献   

11.
《Ceramics International》2022,48(10):14098-14106
Transitional metal selenides are considered as potential anode candidates for sodium-ion batteries (SIBs) because of their relatively high theoretical capacity and environmental benign. However, the large volume change derived from the conversion reaction and the sluggish kinetics due to the inherent low electrochemical conductivity hinder their practical application. Herein, composite materials of NiSe2 encapsulated in nitrogen-doped TiN/carbon nanoparticles with carbon nanotubes (CNTs) on the surface (NiSe2@N-TCP/CNTs) are fabricated via pyrolysis and selenization processes. In this composite, TiN inside the carbon matrix can enhance the conductivity and structural stability. CNTs that are in-situ grown on the surface not only further enhance the conductivity of the composites, but also offer sufficient space to buffer the volume expansion and alleviate serious aggregation of NiSe2 nanoparticles. Benefit from these merits, the NiSe2@N-TCP/CNTs showed a lower charge transfer resistance and a faster Na+ diffusion rate than materials without growing CNTs. When used as the anode of SIBs, the NiSe2@N-TCP/CNTs electrode delivered a reversible capacity of 344.0 mAh g?1 after 1000 cycles at 0.2 A g?1, and still maintained at 272.7 mAh g?1 even at a high current density of 2 A g?1. The remarkable electrochemical performance is mainly attributed to the special designed hierarchical structures and pseudocapacitance sodium storage behavior.  相似文献   

12.
《Ceramics International》2016,42(13):14855-14861
Pure spherical Li4Ti5O12 spinel material is quickly synthesized via an efficient hydrothermal procedure. The obtained Li4Ti5O12 particle size is about 0.5 µm. The Li4Ti5O12 has an initial discharge capacity of 162.2 mA h g−1 and capacity retention of 97.5% after 100 cycles at a rate of 0.2 C. Then, a 2.5 V and long-lasting Li-ion cell with a LiMn2O4 cathode and a Li4Ti5O12 anode is developed. Electrochemical measurements of the cell indicate that the Li4Ti5O12/LiMn2O4 full cell, with a weight ratio of 1.5 between cathode and anode, exhibits excellent electrochemical performance, delivering a reversible capacity of 130 mA h g−1 at room temperature. The full cell also exhibits outstanding electrochemical performances at high temperature, as it has an initial discharge capacity of 109.6 mA h g−1, along with a capacity retention rate of 88.9% after 100 cycles at 55 °C.  相似文献   

13.
Li4Ti4.9V0.1O12 nanometric powders were synthesized via a facile solid-state reaction method under inert atmosphere. XRD analyses demonstrated that the V-ions successfully entered the structure of cubic spinel-type Li4Ti5O12 (LTO), reduced the lattice parameter and no impurities appeared. Compared with the pristine LTO, the electronic conductivity of Li4Ti4.9V0.1O12 powders is as high as 2.9 × 10−1 S cm−1, which should be attributed to the transformation of some Ti3+ from Ti4+ induced by the efficient V-ions doping and the deficient oxygen condition. Meanwhile, the results of XPS and EDS further proved the coexistence of V5+ and Ti3+ ions. This mixed Ti4+/Ti3+ ions can remarkably improve its cycle stability at high discharge–charge rates because of the enhancement of the electronic conductivity. The images of SEM showed that Li4Ti4.9V0.1O12 powders have smaller particles and narrower particle size distribution under 330 nm. And EIS indicates that Li4Ti4.9V0.1O12 has a faster lithium-ion diffusivity than LTO. Between 1.0 and 2.5 V, the electrochemical performance, especially at high rates, is excellent. The discharge capacities are as high as 166 mAh g−1 at 0.5C and 117.3 mAh g−1 at 5C. At the rate of 2C, it exhibits a long-term cyclability, retaining over 97.9% of its initial discharge capacity beyond 1713 cycles. These outstanding electrochemical performances should be ascribed to its nanometric particle size and high conductivity (both electron and lithium ion). Therefore, the as-prepared material is promising for such extensive applications as plug-in hybrid electric vehicles and electric vehicles.  相似文献   

14.
《Ceramics International》2017,43(3):3252-3258
In this study, we report a facile strategy for anchoring Li4Ti5O12 (LTO) particles wrapped within carbon shells onto graphene nanosheet (GNS) using the freeze-drying assisted microwave irradiation method. In this designed structure, a conductive three-dimensional network can be formed by connecting the GNS and carbon layer which is benefit for the transport of electron and Li+-ion. When used as anode material for lithium-ion batteries, this hybrid composite exhibits an excellent high-rate performance with specific capacities of 171.5, 168.2, 160.1, 151.7 and 136.4 mAh g−1 at various current rates of 1, 2, 5, 10 and 20 C, respectively. Furthermore, the specific capacity of the obtained anode still retains 99.6% of the initial value after 20 cycles at 20 C. The enhanced battery performance can be attributed to the improved electronic conductivity of each LTO grain via uniform carbon coating and GNS wrapping. As a consequence, this novel strategy developed in this study may open a new way to fabricate other electrodes for advanced renewable energy conversion and storage applications.  相似文献   

15.
《Ceramics International》2020,46(10):16556-16563
We explored the doping effect of Ge4+ on the Li4Ti5-xGexO12 (x = 0.0 and 0.05) anode material by looking at its electrochemical performance in both Li- and Na-ion batteries. Combined analysis using Rietveld refinement of high-resolution powder diffraction (HRPD) and transmission electron microscopy (TEM) unambiguously identified homogeneous Ge doping into the 16c octahedral Ti site of the Li4Ti5O12 (LTO) cubic spinel structure. This Ge doping leads to a much-reduced particle size, slightly expanded lattice and increased electrical conductivity due to the increased Ti3+ to Ti4+ ratio, these results were verified by HRPD, scanning electron microscopy (SEM), 4-point probe and x-ray photoelectron spectroscopy (XPS) analysis. The Li4Ti4.95Ge0.05O12 (Ge0.05-LTO) electrode shows much-improved capacity, high-rate capability and excellent cycling stability in a Li-half cell compared with an un-doped LTO electrode. This performance improvement is due to the reduced Li+ diffusion path and faster Li+ insertion/extraction kinetics that originate from Ge doping. In addition to these results, when tested as an anode for SIBs, the Ge0.05-LTO electrode exhibits enhanced capacity and cycling stability compared to un-doped LTO electrode, demonstrating its bi-functional, advantageous features in both LIB and SIB systems.  相似文献   

16.
In the present work, submicrometer CoMoO4 is successfully prepared by a facile polymer-pyrolysis method. The phase, structure, composition and morphology of the obtained sample are characterized by several techniques. The proper reaction temperature is 600 °C. As an anode material of lithium half-battery, the sample prepared at 600 °C exhibits a stable reversible capacity of 667.6 mAh g?1 at a current density of 0.2 A g?1. A 96.7% capacity retention is observed between 10 and 100 cycles, where lithium storage reaction is dominated by ionic diffusion, and the diffusion coefficient of lithium ion is about 0.12 × 10?15 cm2 s?1. As electrode of supercapacitors, a high specific capacitance of around 304.6 F g?1 is achieved at a current density of 0.5 A g?1 after 1000 cycles. Therefore, the polymer-pyrolysis method shows great promise in preparing the CoMoO4.  相似文献   

17.
The composite of silicon carbonitride (SiCN) and carbon nanotubes (CNTs) was synthesized by sintering the mixture of polysilylethylenediamine-derived amorphous SiCN and multi-walled CNTs at a temperature of 1,000 °C for 1 h in argon. The as-prepared SiCN–CNTs material, which was used as anode active substance in a lithium ion battery, showed excellent electrochemical performance. Charge–discharge tests showed the SiCN–CNTs anode provided a high initial specific discharge capacity of 1176.6 mA h g−1 and a steady specific discharge capacity of 450–400 mA h g−1 after 30 charge–discharge cycles at 0.2 mA cm−2. Both of the abovementioned values are higher than that of pure polymer-derived SiCN, CNTs, and commercial graphite at the same charge–discharge condition. It was deduced that the CNTs in the composite not only improved the electronic conductivity and offered channels and sites for the immigrating and intercalating of Li+ but also stabilized the structure of the composite.  相似文献   

18.
Li4Ti5O12/carbon nano-tubes (CNTs) composite was prepared by sol-gel method while Ti(OC4H9)4, LiCH3COO·2H2O and the n-heptane containing CNTs were used as raw materials. The characters of Li4Ti5O12/CNTs composite were determined by XRD, SEM, and TG methods. Its electrochemical properties were measured by charge-discharge cycling and impedance tests. It was found that the prepared Li4Ti5O12/CNTs presented an excellent rate capability and capacity retention. At the charge-discharge rate of 5C and 10C, its discharge capacities were 145 and 135 mAh g−1, respectively. After 500 cycles at 5C, the discharge capacity retained as 142 mAh g−1. It even could be cycled at the rate of 20C. The excellent electrochemical performance of Li4Ti5O12/CNTs electrode could be attributed to the improvement of electronic conductivity by adding conducting CNTs and the nano-size of Li4Ti5O12 particles in the Li4Ti5O12/CNTs composite.  相似文献   

19.
As a promising anode material, PbLi2Ti6O14 has attracted the attention of many researchers. In this work, a series of PbLi2Ti6O14 are prepared by solid state method at five different calcination temperatures and used as anode materials in lithium ion batteries. Through a series of tests, the results show that the phase purity, morphology and electrochemical performance of PbLi2Ti6O14 can be seriously influenced by calcination temperature. When the calcination temperature is 900?°C, the phase-pure PbLi2Ti6O14 can be obtained with relatively small particle size, excellent cycle performance and outstanding lithium ion diffusion behavior. It provides an initial charge capacity of 151.3?mA?h?g?1 at 100?mA?g?1. After 100 cycles, it shows a reversible capacity of 142.0?mA?h?g?1 with superior capacity retention of 93.85%. In contrast, PbLi2Ti6O14 formed at 800?°C displays an unsatisfactory performance due to the presence of impurity, even though it has the smallest particle size and the largest lithium ion diffusion coefficient among the five samples. The reversible capacity is only 82.6?mA?h?g?1 after 100 cycles with capacity retention of 53.9%. In order to further study the lithium ion diffusion behavior of PbLi2Ti6O14, the in-situ X-ray diffraction technique is also implemented. It is found that during the lithiation/delithiation process, the stable framework can effectively inhibit the volume change and ensures the excellent electrochemical performance of PbLi2Ti6O14.  相似文献   

20.
《Ceramics International》2023,49(16):26313-26321
In this study, nanocrystalline niobium-doped lithium titanate Li4Ti5O12 (LTO) was successfully synthesized with various stoichiometric ratios (x = 0, 0.025, 0.05, 0.075, 0.1) using a niobium ethoxide precursor via the solid-state synthesis method. X-ray diffraction spectroscopy results revealed that the synthesized samples possess a spinel structure without any impurities, and lattice constants expanded from 8.357 Å to 8.363 Å as the concentration of niobium ions increased. Scanning electron microscopy (SEM) analysis demonstrated that particle sizes ranged from 1.13 to 1.56 μm. The smallest particle size was observed in the LTO-Nb-0.075 sample. The maximum absorptions were detected in the ultraviolet region, and the band gaps of Nb-doped Li4Ti5-xNbxO12 (x = 0, 0.025, 0.05, 0.075, 0.1) were determined using Tauc plots. These results showed that the band gaps of Nb-doped LTO were lowered compared to pure LTO, suggesting enhanced electron conductivity. X-ray photoelectron spectroscopy (XPS) measurements confirmed that the band gaps of Nb-doped samples decreased as the formation of oxygen vacancies and Ti3+ ions increased due to Nb5+ substitution. All synthesized samples displayed well-defined redox peaks in pairs during the cyclic voltammetry (CV) measurement. The optimal stoichiometric ratio for doping lithium titanate was found to be x = 0.075, as it yielded the highest specific capacitance of 3.59 F/g and the lowered band gap value of 3.13 eV. Therefore, this study provides further encouragement for applying LTO electrodes in aqueous capacitors and electrical uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号