首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(1):199-204
MgNb2-xVx/2O6-1.25x (0.1≤x≤0.6) ceramics with orthorhombic columbite structures were prepared at low-temperature by a solid-phase process. The phase component, microscopic morphology, low-temperature sintering mechanism and microwave dielectric performance of MgNb2-xVx/2O6-1.25x ceramics were comprehensively investigated. Low-temperature sintering densification of dielectric ceramics was achieved via the nonstoichiometric substitution of vanadium (V) at the Nb-site. In contrast to pure MgNb2O6 ceramics, the sintering temperature of MgNb2-xVx/2O6-1.25x (x = 0.2) ceramics was reduced by nearly 300 °C owing to the liquid-phase assisted sintering mechanism. The liquid phase arises from the autogenous low-melting-point phase. Meanwhile, MgNb2-xVx/2O6-1.25x (x = 0.2) samples with nonstoichiometric substitution could achieve a more than 900% improvement in the Q × f value, compared with stoichiometrically MgNb2-xVxO6 (x = 0.1, 0.2) ceramics. Finally, MgNb2-xVx/2O6-1.25x dielectric ceramics possess outstanding microwave dielectric properties: εr = 20.5, Q × f = 91000, and τf = -65 ppm/°C when sintered at 1030 °C for x = 0.2, which provides an alternative material for LTCC technology and an effective approach for low-temperature sintering of Nb-based microwave dielectric ceramics.  相似文献   

2.
《Ceramics International》2016,42(7):7943-7949
This paper reports the investigation of the performance of Li2O–B2O3–SiO2 (LBS) glass as a sintering aid to lower the sintering temperature of BaO–0.15ZnO–4TiO2 (BZT) ceramics, as well as the detailed study on the sintering behavior, phase evolution, microstructure and microwave dielectric properties of the resulting BZT ceramics. The addition of LBS glass significantly lowers the sintering temperature of the BZT ceramics from 1150 °C to 875–925 °C. Small amount of LBS glass promotes the densification of BZT ceramic and improves the dielectric properties. However, excessive LBS addition leads to the precipitation of glass phase and growth of abnormal grain, deteriorating the dielectric properties of the BZT ceramic. The BZT ceramic with 5 wt% LBS addition sintered at 900 °C shows excellent microwave dielectric properties: εr=27.88, Q×f=14,795 GHz.  相似文献   

3.
《Ceramics International》2016,42(7):7962-7967
Y2O3 ceramics with good dielectric properties were prepared via co-precipitation reaction and subsequent sintering in a muffle furnace. The effects of Nd doping and sintering temperature on microwave dielectric properties were studied. With the increase in sintering temperature, the density, quality factor (Q×f), and dielectric constant (εr) values of pure Y2O3 ceramics increased to the maximum and then gradually decreased. The Y2O3 ceramics sintered at 1500 °C for 4 h showed optimal dielectric properties: εr=10.76, Q×f=82, 188 GHz, and τf=−54.4 ppm/°C. With the addition of Nd dopant, the Q×f values, εr, and τf of the Nd: Y2O3 ceramics apparently increased, but excessive amount degraded the quality factor. The Y2O3 ceramics with 2 at% Nd2O3 sintered at 1460 °C displayed good microwave dielectric properties: εr=10.4, Q×f=94, 149 GHz and τf=−46.2 ppm/°C.  相似文献   

4.
《Ceramics International》2017,43(12):8951-8955
This study used Li2O–B2O3–SiO2–CaO–Al2O3 (LBSCA) glass to reduce the sintering temperature of LiAlO2 ceramics and to realise the low dielectric constants (ɛr<5) of low-temperature co-fired ceramic (LTCC) materials. LBSCA glass remarkably enhanced the densification of LiAlO2 ceramics. X-ray diffraction patterns indicated that only the γ-LiAlO2 phase occurred within the doping range of 1 wt% to 3.5 wt%. Scanning electron microscopy images showed dense and uniform grains in samples with 3.0 wt% LBSCA glass. These samples also exhibited low dielectric constants and low dielectric loss when sintered at 900 °C and 950 °C (i.e., ɛr=4.48, Qf=35,540 GHz and τf=−53 ppm/°C at 900 °C; ɛr=4.50, Qf=38,979 GHz and τf=−55 ppm/°C at 950 °C, respectively). The material prepared was chemically compatible with silver and showed potential in applications of high-frequency LTCC microwave substrates.  相似文献   

5.
Herein, the improvement of the microwave dielectric properties and sintering characteristics of Zn1?xBixVxW1?xO4(x = 0–0.15)-based ceramics is reported. The results showed that an appropriate amount of doping could not only reduce the optimum sintering temperature from 1100° to 900°C, but also enhance the densification of the microstructures and increase the Q×f value from 5351 to 42525 GHz. Additionally, various structural parameters including the phase composition, crystal structure, vibrational and chemical bond characteristics that are correlated with the dielectric properties were systematically investigated. By considering the chemical bond characteristics, the first-principles calculations and the acquired Raman spectra, the interaction between W-O is stronger than Zn-O in the ZnWO4 structure, while the interaction between V-O is stronger than Bi-O in BiVO4. Interestingly, when the Zn0.97Bi0.03V0.03W0.97O4-based ceramics were sintered at 900 °C, improved microwave dielectric properties were acquired (εr =18.32, Q×f=42525 GHz, τf=?67.51 ppm/°C), which provides a promising candidate in low-temperature co-fired ceramics technology.  相似文献   

6.
《Ceramics International》2016,42(9):11161-11164
The effects of Li2O–B2O3–Bi2O3–SiO2 (LBBS) glass on the sintering characteristics and microwave dielectric properties of (Zn0.95Co0.05)2SiO4 were investigated in this study. (Zn0.95Co0.05)2SiO4 powders were fabricated by traditional solid-state preparation, and LBBS glass was synthesised by quenching method. The LBBS glass can effectively reduce the sintering temperature of (Zn0.95Co0.05)2SiO4 from 1300 °C to 900 °C and thus promote the densification and uniformity of the specimens. XRD patterns indicated that no other secondary phases existed in our doping range (0–2 wt%). To obtain the highest sintering density and a uniform microstructure when the samples were sintered at 900 °C, the optimal doping content was set to be 1.5 wt%. The sample also demonstrated the following excellent microwave dielectric properties: ɛr=6.16, Qf=33,000 GHz and τf=−59 ppm/°C.  相似文献   

7.
The effects of LB glass on the sintering behavior, structure, and dielectric properties for the Ba3.75Nd9.5Ti17.5(Cr0.5Nb0.5)0.5O54 (BNTCN) ceramic were investigated. The results showed that the LB glass, as an effective sintering aid, successfully lowered the sintering temperature of BNTCN ceramic by formation of the liquid phase. Furthermore, the change of the structure and decrease in grain size had influences on the electrical conductivity, thermal stability, and microwave dielectric properties for the BNTCN ceramics doped LB glass. Finally, the excellent microwave dielectric properties with εr = 73.4, Q × f = 5277 GHz, and τf = +7.1 ppm/°C were obtained for samples sintered at 950°C when x = 5, indicating the BNTCN ceramic doped with 5 wt% LB glass is a promoting LTCC material.  相似文献   

8.
Commercial glass frits (lead borosilicate glasses) were employed as the sintering aids to reduce the sintering temperatures of BST ceramics. The effects of the glass content and the sintering temperature on the microstructures, dielectric properties and tunabilities of BST ceramics have been investigated. Densification of BST ceramics of 5 wt% glass content becomes significant from sintering temperature of 1000 °C. The glass content shows a strong influence on the Curie temperature Tc, permittivity and the diffuse transition. X-ray results show all BST ceramics exhibit a perovskite structure and also the formation of a secondary phase, Ba2TiSi2O8. The shift of BST diffraction peaks towards higher angle with increasing the glass content indicates the substitution of Pb2+ in Ba2+ site, which mainly accounts for the diffuse transition observed in these BST ceramics. BST ceramics with 10 wt% glass additives possess the highest tunability at all four sintering temperatures. A tunability of 12.2% at a bias field of 1 kV/mm was achieved for BST ceramics with 10 wt% glass content sintered at 900 °C.  相似文献   

9.
Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were prepared by the conventional solid-state reaction method. The phase composition, sintering characteristics, microstructure and dielectric properties of Ti4+ replacement by Nb5+ in the formed solid solution Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were systematically studied. The structural variations and influence of Nb5+ doping in Mg(Ti1-xNbx)O3 were also systematically investigated by X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction and its Rietveld refinement results confirmed that Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics crystallised into an ilmenite-type with R-3 (148) space group. The replacement of the low valence Ti4+ by the high valence Nb5+ can improve the dielectric properties of Mg(Ti1-xNbx)O3 (x = 0–0.09). This paper also studied the different sintering temperatures for Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics. The obtained results proved that 1350 °C is the best sintering temperature. The permittivity and Q × f initially increased and then decreased mainly due to the effects of porosity caused by the sintering temperature and the doping amount of Nb2O5, respectively. Furthermore, the increased Q × f is correlated to the increase in Ti–O bond strength as confirmed by Raman spectroscopy, and the electrons generated by the oxygen vacancies will be compensated by Nb5+ to a certain extent to suppress Ti4+ to Ti3+, which was confirmed by XPS. The increase in τf from ?47 ppm/°C to ?40.1 ppm/°C is due to the increment in cell polarisability. Another reason for the increased τf is the reduction in the distortion degree of the [TiO6] octahedral, which was also confirmed by Raman spectroscopy. Mg(Ti0.95Nb0.05)O3 ceramics sintered at 1350 °C for 2 h possessed excellent microwave dielectric properties of εr = 18.12, Q × f = 163618 GHz and τf = ?40.1 ppm/°C.  相似文献   

10.
Low-temperature-fired microwave ceramics are key to realizing the integration and miniaturization of microwave devices. In this study, a facile wet chemical method was applied to synthesize homogenous nano-sized CaF2 powders for simultaneously achieving low-temperature sintering and superior microwave dielectric properties. Pure CaF2 ceramics sintered at 950 °C for 6 h with good microwave dielectric properties (εr = 6.22, Q×f = 36,655 GHz, and τf = ?102 ppm/°C) was achieved. The microwave dielectric properties of the CaF2 ceramics were further improved by introducing LiF as a sintering aid. The sintering temperature of CaF2-based ceramics was effectively lowered from 950 °C to 750 °C with 10 wt% LiF doping, and excellent microwave dielectric properties (εr = 6.37, Q×f = 65,455 GHz, and τf = ?71 ppm/°C) were obtained.  相似文献   

11.
SiO2-Al2O3-CaO-based glass (10–60 wt%)/mullite composites were investigated for the LTCC and radome applications. The optimum densification temperatures decreased from 1550°C (10 wt% glass) to 1400°C (30 wt% glass) by means of liquid-phase sintering, and to 850°C–825°C (50–60 wt% glass) by means of viscous phase sintering. XRD analysis showed that mullite was the main phase as well as in situ crystallized anorthite after 825°C. The composite with 20 wt% glass was a suitable candidate for the radome applications (bulk density = 2.86 g/cm3 after sintering at 1450°C, dielectric constant (loss) = 7.12 (0.0025) at 5 MHz, thermal expansion coefficient = 4.27 ppm/°C between 25°C and 800°C, thermal shock resistance parameter = 162°C), and the composite with 50 wt% glass was a suitable candidate for the low-temperature cofired ceramic applications (bulk density = 2.64 g/cm3 after sintering at 850°C, dielectric constant (loss) = 6.79 (0.0043) at 5 MHz, thermal conductivity = 2.11 W/m⋅K at 25°C, and thermal expansion coefficient = 3.93 ppm/°C between 25°C and 300°C).  相似文献   

12.
《Ceramics International》2021,47(20):28675-28684
In next-generation mobile and wireless communication systems, low sintering temperature and excellent dielectric properties are synergistic objectives in the application of dielectric resonators/filters. In this work, Li2Ti0·98Mg0·02O2·96F0.04–1 wt% Nb2O5 (LTMN) ceramics were fabricated, and their sintering temperature was successfully lowered from 1120 °C to 750 °C by adjusting the mass ratio of B2O3–CuO (BC) additive. The optimum dielectric properties (ԑr ~ 24.44, Q × f ~ 60,574 GHz and τf ~ 22.8 ppm/°C) were obtained in BC-modified LTMN ceramics sintered at 790 °C. Even if their sintering temperature was lowered to 750 °C, the lowest temperature among the Li2TiO3-based dielectric ceramics currently used for LTCC technology, excellent dielectric properties (ԑr ~ 23.77, Q × f ~ 51,636 GHz) were still maintained. Additionally, no extra impurity phase was detected in BC-modified LTMN ceramics co-fired with Ag at 790 °C, indicating that BC-modified LTMN ceramics have a bright prospect in high-performance LTCC devices for 5G applications.  相似文献   

13.
《Ceramics International》2020,46(8):12088-12095
BaAl2Si2O8–Li2O–MgO–ZnO–B2O3–SiO2 (BAS-LMZBS) glass ceramics were prepared through the solid-state route. The phase transformation, microstructure, bulk density and microwave dielectric properties of (1-x)BaAl2Si2O8-xLMZBS(x = 0.1–0.4) the glass ceramics were examined. The effects of the LMZBS additive as a mineralizer on the hexagonal-to-monoclinic transformation were investigated by X-ray diffraction and scanning electron microscope. All of the hexagonal phases were converted into monoclinic phases when x = 0.1, and it was found that LMZBS glass affected the densification of the ceramic samples. Monocelsian was successfully prepared, and its sintering temperature was reduced from above 1400 °C–870 °C by adding LMZBS glass. Excellent microwave dielectric properties (εr = 7.31, Q × f = 48,926 GHz and τƒ = −48 ppm/°C) were obtained at 870 °C. This sample shows great chemical compatibility with Ag electrodes and can be a promising candidate for practical applications of low-temperature, co-fired ceramics.  相似文献   

14.
《Ceramics International》2021,47(22):31375-31382
Novel Ce2(MoO4)2(Mo2O7) (CMO) ceramics were prepared by a conventional solid-state method, and the microwave dielectric properties were investigated. X-ray diffraction results illustrated that pure Ce2(MoO4)2(Mo2O7) structure formed upon sintering at 600 °C-725 °C. [CeO7], [CeO8], [MoO4], and [MoO6] polyhedra were connected to form a three-dimensional structure of CMO ceramics. Analysis based on chemical bond theory indicated that the Mo–O bond critically affected the ceramics’ performance. Furthermore, infrared-reflectivity spectra analysis revealed that the primary polarisation contribution was from ionic polarisation. Notably, the optimum microwave dielectric properties of εr = 10.69, Q·f = 49,440 GHz (@ 9.29 GHz), and τf = −30.4 ppm/°C were obtained in CMO ceramics sintered at 700 °C.  相似文献   

15.
《Ceramics International》2017,43(10):7522-7530
Low-loss novel Li4Mg3Ti2O9 dielectric ceramics with rock-salt structure were prepared by a conventional solid-state route. The crystalline structure, chemical bond properties, infrared spectroscopy and microwave dielectric properties of the abovementioned system were initially investigated. It could be concluded from this work that the extrinsic factors such as sintering temperatures and grain sizes significantly affected the dielectric properties of Li4Mg3Ti2O9 at lower sintering temperatures, while the intrinsic factors like bond ionicity and lattice energy played a dominant role when the ceramics were densified at 1450 °C. In order to explore the origin of intrinsic characteristics, complex dielectric constants (ε and ε’’) were calculated by the infrared spectra, which indicated that the absorptions of phonon oscillation predominantly effected the polarization of the ceramics. The Li4Mg3Ti2O9 ceramics sintered at 1450 °C exhibited excellent properties of εr=15.97, Q·f=135,800 GHz and τf=−7.06 ppm/°C. In addition, certain amounts of lithium fluoride (LiF) were added to lower the sintering temperatures of matrix. The Li4Mg3Ti2O9−3 wt% LiF ceramics sintered at 900 °C possessed suitable dielectric properties of εr=15.17, Q·f =42,800 GHz and τf=−11.30 ppm/°C, which made such materials promising for low temperature co-fired ceramic applications (LTCC).  相似文献   

16.
The influences of Li2O-B2O3-SiO2 glass (LBS) on the activation energy, phase composition, the stability of the structure and microwave dielectric properties of Zn0.15Nb0.3Ti0.55O2 ceramics have been systematically investigated. LBS glass acted as flux former and contributed to the reactive liquid-phase sintering mechanism, which remarkably lowed the sintering temperature from 1150?°C to 900?°C and enhanced the shrinkage and densification of ceramic at the low sintering temperatures. The ceramics with 1.5?wt% LBS glass sintered at 900?°C for 3?h show great properties: εr = 73.59, Q × f = 8024?GHz, τf = 270.54?ppm/°C.  相似文献   

17.
《Ceramics International》2016,42(14):15242-15246
In this work, 0.86CaWO4–0.14Li2TiO3 ceramics were prepared via a traditional solid-state process. The effects of Li2O–B2O3–SiO2–CaO–Al2O3 (LBSCA) addition on the phase formation, sintering character, microstructure and microwave dielectric properties of the ceramics were investigated. A small amount of LBSCA addition could effectively lower the sintering temperature of the ceramics. X-ray diffraction analysis revealed that CaWO4 and Li2TiO3 phases coexisted without producing any other crystal phases in the sintered ceramics. The dielectric constant and Qf values were related to the amount of LBSCA addition and sintering temperatures. All specimens could obtain near-zero temperature coefficient (τf) values through the compensation of the positive τf of Li2TiO3 and the negative τf of CaWO4. The 0.86CaWO4–0.14Li2TiO3 ceramic with 0.5 wt% LBSCA addition and sintered at 900 °C for 3 h exhibited excellent microwave dielectric properties of εr=12.43, Qf=76,000 GHz and τf=−2.9 ppm/°C.  相似文献   

18.
《Ceramics International》2023,49(1):716-721
Ca1.15RE0.85Al0.85Ti0.15O4 (RE = Nd, La, Y) ceramics were prepared by a reaction sintering method. The sintering behavior, phase composition, microstructure and microwave dielectric performances of ceramics were investigated. X-ray diffraction patterns illustrated that both the Ca1.15Nd0.85Al0.85Ti0.15O4(CNAT) and Ca1.15Y0.85Al0.85Ti0.15O4(CYAT) ceramics are single-phase structures, and the Ca1.15La0.85Al0.85Ti0.15O4(CLAT) ceramic contain LaAlO3 and CaO phases. The apparent morphology and elemental distribution of the ceramic samples were analyzed by using scanning electron microscope and energy dispersive spectrometer. When the sintering temperature is 1500 °C, the CNAT and CYAT ceramics have the best microwave dielectric properties with εr = 19.2, Q × f = 74924 GHz, τf = ?1.21 ppm/°C and εr = 17.5, Q × f = 27440 GHz, τf = ?5.79 ppm/°C, respectively. And the best microwave dielectric properties of εr = 17.5, Q × f = 22568 GHz, τf = ?14.69 ppm/°C were obtained for the CLAT ceramic sintered at 1525 °C. The reaction sintering method provides a low-cost, economical and straightforward method for the preparation of the Ca1.15RE0.85Al0.85Ti0.15O4 (RE = Nd, La, Y) ceramics, which has promising potential for application.  相似文献   

19.
The liquid‐phase sintering behavior and microstructural evolution of x wt% LiF aided Li2Mg3SnO6 ceramics (x = 1‐7) were investigated for the purpose to prepare dense phase‐pure ceramic samples. The grain and pore morphology, density variation, and phase structures were especially correlated with the subsequent microwave dielectric properties. The experimental results demonstrate a typical liquid‐phase sintering in LiF–Li2Mg3SnO6 ceramics, in which LiF proves to be an effective sintering aid for the Li2Mg3SnO6 ceramic and obviously reduces its optimum sintering temperature from ~1200°C to ~850°C. The actual sample density and microstructure (grain and pores) strongly depended on both the amount of LiF additive and the sintering temperature. Higher sintering temperature tended to cause the formation of closed pores in Li2Mg3SnO6x wt% LiF ceramics owing to the increase in the migration ability of grain boundary. An obvious transition of fracture modes from transgranular to intergranular ones was observed approximately at x = 4. A single‐phase dense Li2Mg3SnO6 ceramic could be obtained in the temperature range of 875°C‐1100°C, beyond which the secondary phase Li4MgSn2O7 (<850°C) and Mg2SnO4 (>1100°C) appeared. Excellent microwave dielectric properties of Q × f = 230 000‐330 000 GHz, εr = ~10.5 and τf = ~?40 ppm/°C were obtained for Li2Mg3SnO6 ceramics with x = 2‐5 as sintered at ~1150°C. For LTCC applications, a desirable Q × f value of ~133 000 GHz could be achieved in samples with x = 3‐4 as sintered at 875°C.  相似文献   

20.
x ZnO- (100-x) B2O3 (x = 45–64 mol%) glass-ceramics for ULTCC applications were prepared via the solid-state reaction method, and their crystallization behavior, sintering mechanism, microstructure and microwave dielectric properties were investigated. In this work, the zinc boron binary glasses can be formed in the range of 45–73 mol% ZnO content, and the glass with 55 mol% ZnO content has the highest glass-forming ability. The Zn4B6O13 crystal is formed in binary ZnO-B2O3 glass at 640 °C, which is much lower than that in ceramics. The glass-ceramics exhibit large grains with 5 ~ 10 µm consisting of fine and uniform secondary structures. The precipitation of Zn4B6O13 crystal and the refinement secondary structure improves the microwave dielectric properties. The 55 ZnO - 45 B2O3 glass-ceramic sintered at 640 °C for 5 h exhibits the optimum microwave dielectric properties of εr = 6.09, Q×f = 20,389 GHz, τf = 14 ppm/°C, and also high Vickers hardness of 625 kgf/mm2 and good chemical compatibility with Ag or Al electrode, which is a good candidate for ULTCC substrate materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号