首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(15):23932-23940
A three-step strategy combining solvothermal and liquid phase reduction method had been developed for preparation of magnetic triple-shell hollow structural Fe3O4/FeCo/C (TSH–Fe3O4/FeCo/C) composite microspheres. FeCo was used to enhance electromagnetic (EM) wave absorption in different frequency band and broaden effective absorbing bandwidth, while carbon was used to improve impedance matching. Triple-shell hollow structure was designed to enrich the multiple interfaces to favor the interfacial polarization, increase the multiple reflections and scattering, and provide physicochemical protection to Fe3O4 core from oxidation. The microstructure and morphology of TSH-Fe3O4/FeCo/C composite microspheres were characterized by TEM, XRD and Raman in detail. The results indicated that magnetic Fe3O4 was completely covered by FeCo and carbon via layer by layer. As an EM wave absorber, the maximum reflection loss of TSH-Fe3O4/FeCo/C composite microspheres was up to -37.4 dB due to better normalized characteristic impedance at a thickness of 2.2 mm and the bandwidth less than -10 dB even reached up to 5.9 GHz. The excellent EM wave absorption performance was attributed to the combination of shell materials (Fe3O4, FeCo and carbon) and unique triple-shell hollow structure, which lead to multiple relaxation processes and good impedance matching. Consequently, this work would contribute to the design and preparation of high performance EM wave absorbent with outstanding absorbing property and wider absorption range.  相似文献   

2.
Conductor-dielectric-magnetic multicomponent coordination composites with rhombic Fe2O3 lumps doping hollow ZnFe2O4 spheres through oxidative decomposition process implanted into graphene conductive network (hollow ZnFe2O4 spheres/rhombic Fe2O3 lumps/rGO composites) were successfully constructed by a facile method. The countless hollow ZnFe2O4 spheres were compactly attached to the curled-paper rGO and larger sized-rhombic Fe2O3 lumps were relatively dispersed. Among, the hollow structure of ZnFe2O4 spheres could attenuate the electromagnetic wave by multiple reflections and scatterings. Intriguingly, hollow ZnFe2O4 spheres reacted with GO to form intermediate rhombic Fe2O3 lump products, which ameliorated the hetero-interfaces structure and helped to improve impedance matching by weakening the strong magnetic ZnFe2O4 (Ms = 91.2 emu/g) and high conductive rGO after the introduction of weakly magnetic Fe2O3 semiconductor. Moreover, all three components could induce dielectric polarization losses, such as multilayer or dipole polarization. Therefore, the maximum absorption of ternary composites was up to ?64.3 dB at 7 GHz and 3.4 mm, simultaneously, and a bandwidth exceeding ?10 dB was 4.2 GHz at 1.7 mm. Meanwhile, with a thin thickness range of 1.5–5 mm, the absorption bandwidth below ?10 dB was from 2 to 18 GHz which occupied for 91.5% of whole study frequency range. These results provided a new approach and reference for the design and property regulation of electromagnetic materials at electronic communications, aerospace and military radar flied.  相似文献   

3.
《Ceramics International》2017,43(2):1887-1894
Fe3O4/reduced graphene oxide (RGO) nanocomposite was synthesized by a simple hydrothermal method and then SiO2 coated onto Fe3O4 by a modified Stӧber method. The transmission electron microscopy and field emission scanning electron microscopy characterization indicate that masses of Fe3O4@SiO2 core-shell structure nanospheres attached to the RGO sheets, and that the thicknesses of SiO2 shells are about 20–40 nm. The X-ray diffractograms and Raman spectra illustrate that the synthesized samples consist of highly crystallized cubic Fe3O4, amorphous SiO2 and disorderedly stacked RGO sheets. The magnetic hysteresis loops reveal the ferromagnetic behavior of the samples at room temperature. In addition, the Fe3O4@SiO2/RGO paraffin composite exhibit excellent electromagnetic wave absorption properties at room temperature in the frequency range of 2–18 GHz, which are attributed to the effective complementarities between the dielectric loss and magnetic loss. For Fe3O4@SiO2/RGO-1 and Fe3O4@SiO2/RGO-2 nanocomposite, the minimum reflection loss can reach −26.4 dB and −16.3 dB with the thickness of 1.5 mm, respectively. The effective absorption bandwidth of the samples can reach more than 10.0 GHz with the thickness in the range of 1.5–3.0 mm. It is demonstrated that such nanocomposite could be used as a promising candidate in electromagnetic wave absorption area.  相似文献   

4.
《Ceramics International》2020,46(9):13641-13650
Given the rapid development of electrommunication and radar detection technologies, low frequency electromagnetic wave materials have received more and more attention. Herein, the Apium-derived biochar loaded with MnFe2O4@C has been successfully prepared by using co-solvothermal and calcination method. The cladding carbon layer on MnFe2O4 NPs is migrated from biochar via thermal diffusion, and the biochar is covered with the ferrite NPs as well. Thus, the combination of dielectric and magnetic loss endows the composite with excellent low frequency electromagnetic absorption ability i.e. the optimal microwave absorbing intensity is −48.92  dB at 0.78 GHz with an extended effective absorbing bandwidth of 0.38–1.78 GHz for only 2.5 mm thickness, being ascribed to nature resonance, multiple interfacial and surface polarization, strong electromagnetic attenuation ability and good impedance matching property in detail. This bio-based ferrite composites have great potential in preparation of MAMs due to the advantages of extraordinary performance, lightweight property, environmental protection and easy degradation.  相似文献   

5.
《Ceramics International》2023,49(6):8772-8780
Despite Co3O4 has been widely applied in electromagnetic wave (EMW) absorbers, single Co3O4 doesn't have excellent EMW absorbing performance. Modification of Co3O4 with other metal ions addition is an effective way to improve its impedance matching and EMW attenuation. Herein, CuO/Cu0.3Co2.7O4/Co3O4 and NiCo2O4/Co3O4 composites have been obtained via a facile two-stage strategy, and the influence of Cu2+ and Ni2+ on the high-frequency and low-frequency EMW absorbing performance of the composites has been investigated as well. The electromagnetic parameters of samples are regulated by adding different metal ions to achieve optimum impedance matching. Dipole polarization and magnetic resonance are the main loss mechanisms. The composite with Cu2+ and Ni2+ additions exhibits the best EMW absorption with an effective absorption bandwidth (EAB) of 10.8–18.0 GHz for 2.1 mm thickness at high-frequency and 4.5–8.5 GHz for 4.9 mm thickness at low frequencies, respectively. This work offers an effective method for preparing composite materials with multicomponent broadband absorption of oxides.  相似文献   

6.
The recent criteria to evaluate electromagnetic wave absorber include low density, strong absorbency, wide absorption bandwidth and thin absorber thickness, but its performance at low frequencies is always ignored. In this paper, the porous magnetic carbon nanofibers (P-CNF/Fe) for high-efficient electromagnetic wave absorption at low frequencies were fabricated by electrospinning followed by stabilization and carbonization. With the introduction of porous nanostructure, the permittivity of carbon nanofibers was decreased at low frequency and the impedance matching of permittivity and permeability was realized. The electromagnetic absorbing properties were investigated in detail. The minimum reflection coefficient reaches ?44.86?dB at 4.42?GHz, and the widest effective absorption bandwidth (EAB) in the frequency was 3.28 range from 12.96 to 16.24?GHz. Consequently, considering the EM wave absorption performance, P-CNF/Fe synthesized in this work can be a promising candidate in the field of EM wave attenuation.  相似文献   

7.
《Ceramics International》2017,43(16):13146-13153
Ideal electromagnetic absorbing materials with lightweight and high efficiency have broad application outlook in military and civil fields. In this work, a 3D nanostructure material by hybridizing Fe3O4 nanocrystals and reduced graphene oxide (Fe3O4/rGO) were synthesized through an environmental-friendly one-pot solvothermal method. The effect of GO loading on electromagnetic (EM) wave absorption characteristic of Fe3O4/rGO was investigated. The introduction of rGO sheets not only prevented Fe3O4 from agglomerating, also improved the absorption performance of Fe3O4/rGO hybrids. With an appropriate addition, Fe3O4/rGO obtained a minimum reflection loss (RL) of −22.7 dB and the absorption bandwidth was 3.13 GHz (90% absorption).  相似文献   

8.
《Ceramics International》2022,48(7):9090-9098
Here we introduce a controllable route for the efficient synthesis of Zn0.6Ni0.3Cu0.1Fe2O4 ferrite glass-ceramic with enhanced electromagnetic wave (EMW) absorbing performance. By adding a certain amount of Zn, Ni, Cu and Fe oxides into the SiO2–Al2O3–B2O3–CaO-R2O glass system, the microstructure of three-dimensional dendritic ferrites combined with amorphous SiO2-rich phase is constructed through a high-temperature melt and quenching route. The good EMW absorption performance is attributed to the unique combination of amorphous glass and spinel ferrite, which improves the impedance matching of the material and absorbs EMW by the dielectric loss and magnetic loss. Moreover, the dendritic ferrite crystal phase is compounded with the SiO2-rich amorphous phase to form grain boundaries and crystal-amorphous interfaces, which enhances the interfacial polarization and builds multiple transmission-absorption mechanisms. The results show that the reflection loss peak value of the glass-ceramics containing 60 wt% Zn0.6Ni0.3Cu0.1Fe2O4 spinel is ?42.16 dB with the sample thickness of 2 mm, and the effective absorption band range (reflection loss ≤ -10 dB) is 3.76 GHz (13.6–17.36 GHz) at 1.5 mm. This approach presents a scalable and low-cost solution that may be applied to the design of high-efficiency EMW consumption components in the future.  相似文献   

9.
Porous Fe3O4/C microspheres, which were Fe3O4 nanocrystals (~8?nm) embedded in an open nanostructured carbon network, were successfully synthesized via a facile hydrothermal process. The porous Fe3O4/C microspheres possessed many distinct attributes that facilitate efficient broadband electromagnetic wave absorption (EMWA). EMWs were attenuated through multiple reflections and absorption in the 3D interconnected porous structure of the microspheres; these processes collectively improved the interaction between the EMWs and the absorber. Additionally, the carbon network and embedded Fe3O4 nanoparticles caused significant dielectric losses and magnetic losses, respectively, which also enhanced EMWA. The EMWA characteristics of the microspheres could be precisely tuned via changing the carbon content to achieve optimized impedance matching. Porous Fe3O4/C microspheres with a 71.5?wt% carbon content displayed particularly impressive EMWA properties: a maximum reflection loss (RL) value of ??31.75 across broad band frequencies in the range of 7.76–12.88?GHz (RL < ?10?dB) at an absorber thickness of 3.0?mm. These excellent EMWA properties may be attributed to both dielectric loss (carbon) and magnetic loss (Fe3O4). Additionally, the 3D interconnected porous structure of the Fe3O4/C microspheres is especially favorable for impedance matching.  相似文献   

10.
《Ceramics International》2022,48(17):25111-25119
Electromagnetic wave (EMW) absorbing materials have been widely applied in the fields of military and engineering areas. It is of great significance to develop high-performance EMW absorbing materials. This work assembled the sandwich-like Ti3C2Tx based nanocomposites by the microwave-assisted annealing of CoFe-MOF@Ti3C2Tx (CFMF@Ti3C2Tx) precursors at different temperatures. Results show that, as the heat treatment temperature is 450 °C, the sandwich-like Ti3C2Tx@CoFe@TiO2 nanocomposites present better EMW absorption properties. The minimum reflection loss (RL) value was ?62.9 dB at 17.95 GHz with a thin thickness of 1.2 mm. Moreover, the effective absorption bandwidth (EAB) value was 5.02 GHz (12.74–17.76 GHz) with a thickness of 1.4 mm. The application of microwave-assisted annealing contributed to the formation of CoFe nanoparticles and TiO2 nanoparticles because of the ultra-fast heating rate. The introduction of the nanoparticles enhanced the multiple polarization, optimized the impedance matching and introduced magnetic loss, leading to the improvement of EMW absorption. When the annealing temperature further increased to 550 °C, the EMW absorbing performance was weakened, which was mainly correlated with the decrement of the interface area due to the increase of the TiO2 nanoparticle size and CoFe nanoparticle size. Thus, the loss effect of the multiple interface polarization weakens in the EMW absorption. In addition, the high permittivity of Ti3C2Tx disappears, which deteriorated the impedance matching and attenuation ability of EMW. Ultimately, sandwich-like Ti3C2Tx@CoFe@TiO2 nanocomposite with satisfactory EMW absorbing properties is established, promising for various EMW absorbing applications.  相似文献   

11.
《Ceramics International》2023,49(19):31276-31286
Elimination or reduction of electromagnetic wave pollution is receiving increasing attention; development of high-performance wave-absorbing materials has become key to solving this problem. In this study, BaFe12O19 crystals were precipitated in a BaO–Fe2O3–B2O3–SiO2 glass system using the melt-quench-second heat treatment method. The microstructure and magnetic properties of the BaFe12O19 glass ceramics and their electromagnetic wave loss characteristics were analyzed. The composition of the crystals in the glass can be modified by introducing other metal oxides, such as ZrO2 (BFO-Z), TiO2 (BFO-T), and Al2O3 (BFO-A), to enrich the heterogeneous interfaces and increase the dielectric loss of the material. The maximum effective absorption bandwidth of BaFe12O19 glass-ceramics with addition of ZrO2 (BFO-Z) was increased to 3.20 GHz; the minimum reflection loss was reduced to −45.60 dB. This simple method represents a new direction for fabricating high-performance wave-absorbing materials.  相似文献   

12.
《Ceramics International》2022,48(2):1869-1878
As electromagnetic wave (EMW) pollution has become a serious problem in daily life, lightweight, efficient, and mass-produced EMW-absorbing materials are urgently needed. Herein, we developed a novel method for the continuous growth of carbon nanotubes (CNTs) on the surface of polyacrylonitrile (PAN)-based carbon fibers (CFs) by chemical vapor deposition (CVD), which can be applied to mass production. The obtained CF/CNT composites demonstrate outstanding EMW absorption capability, exhibiting a -58.75 dB reflection loss (RL) at a thickness of 1.54 mm. An effective absorption bandwidth (RL < -10 dB) of 4.24 GHz (13.76–18.00 GHz) was achieved at a thickness as low as 1.25 mm, which almost covers the entire Ku band. The excellent EMW-absorbing performance can be attributed to the 3D conductive network constructed by the CNT forest, which effectively promotes multiple reflections and scattering, and further favors dipole and interface polarizations. The mechanical properties of CF, CF-electrochemical anodic oxidation (EAO), and CF/CNT composites were examined, the results showed that the single-filament tensile strength of CF/CNT@0.07 and CF/CNT@0.09 was effectively improved. Our work suggests that the novel CF/CNT composite is a promising material for EMW absorption and strength enhancement owing to its light weight, high strength, low thickness, and good scale-up ability.  相似文献   

13.
《Ceramics International》2022,48(5):6338-6346
The potential of two-dimensional layered MXenes in electromagnetic wave (EMW) absorption needs further development. Herein, we carried out the in situ growth of carbon nanotubes (CNTs) on the surface of Ti3C2Tx MXene at ultra-low temperature via chemical vapor deposition. The obtained CNTs exhibited a bamboo-like structure and were accompanied by helical carbon nanofibers. The ultra-low temperature solved the problem that the high temperature required in the traditional CNT growth process would destroy the structural integrity of MXene. The lush CNT forest cross-linked the MXene layers, transforming the two-dimensional layered structure into a three-dimensional conductive network, providing abundant conductive channels for carriers, optimizing the impedance matching of the CNT/MXene hybrid, and resulting in a significant dielectric loss. The as-prepared CNT/MXene hybrid exhibited a minimal reflection loss of ?52.56 dB (99.9994% EMW absorption) in the X-band. This work proposes a new idea to enhance the EMW absorption properties of Ti3C2Tx MXene and fabricate high-performance MXene-based EMW absorbers.  相似文献   

14.
《Ceramics International》2022,48(2):1908-1915
A novel ternary layered ceramic of Y3Si2C2 was successfully in-situ synthesized on the surface of home-made third-generation KD-SA SiC fiber for the first time by molten salt method aimed at improving the electromagnetic wave (EMW) absorption. After in-situ synthesis of Y3Si2C2 ceramic layer on SiC fiber (SiCf/Y3Si2C2), significantly improved EMW absorption performance was obtained. The minimum reflection loss (RLmin) of ?16.97 dB was reached in SiCf/Y3Si2C2 composites at the thickness of only 2.19 mm, and the effective absorption bandwidth (EAB) was up to 5.44 GHz (12.56–18 GHz) at a thin thickness of 2.64 mm. The improvement in EMW absorption of SiCf/Y3Si2C2 is mainly attributed to enhanced dielectric loss and conduction loss resulting from increased heterogeneous interfaces and multiple reflections and scattering originating from net structure. The SiCf/Y3Si2C2 could be a promising EMW absorber for application in high-performance EMW absorbing materials.  相似文献   

15.
《Ceramics International》2016,42(8):9636-9639
A Si3N4 ceramic with gradient distribution of tri–iron tetroxide (Gradient–Si3N4–Fe3O4) was fabricated with a combined technique of chemical precipitation and directional infiltration. Electromagnetic wave could enter Gradient–Si3N4–Fe3O4 with little reflection because of weak impedance mismatch at its surface. Also the electromagnetic wave entering the Gradient–Si3N4–Fe3O4 propagated with small reflection due to continuous and gradual change of impedance resulting from the gradient Fe3O4 distribution, and was absorbed completely by Fe3O4 of the gradient structure.  相似文献   

16.
In recent years, porous or layered magnetic materials have received increasing attention due to their low density and lightweight. In this work, porous BiFeO3 microspheres and three-dimensional porous BiFeO3 microsphere-reduced graphene oxide (RGO) composite (3D porous BiFeO3/RGO) were prepared by one-step etching processing using pure BiFeO3 particles as precursors. The precursor undergoes dissolution-recrystallization/reduction process, resulting in large amount of BiFeO3 fragments and graphene hybrid product, which forms 3D porous BiFeO3/RGO composite. Electromagnetic (EM) absorption performance measurements exhibit that at low thickness of 1.8?mm, porous BiFeO3/RGO composite can achieve reflection loss (RL) value up to ?46.7?dB and absorption bandwidth (defined by RL <?10?dB) exceeding 4.7?GHz (from 12.0 to 16.7?GHz), testifying outstanding microwave absorbing performance. Compared with pure porous BiFeO3, improved EM wave absorption ability of as-prepared porous BiFeO3/RGO composite is attributed to interfacial polarization, multiple reflections, scattering, and appropriate impedance matching.  相似文献   

17.
《Ceramics International》2023,49(13):21335-21345
Multi-component and a large number of non-homogeneous interface absorbers have been proven to be the preferred choice of electromagnetic wave (EMW) absorption materials. Herein, hollow porous Ni@SiC nanospheres (HPNS) were successfully constructed by combining a carbothermal reduction preparation strategy and subsequent electroless plating process. The heterogeneous dielectric/magnetic multi-component benefit to excellent EMW absorption properties through forming multiple polarizations, dielectric loss, and magnetic loss effects. Particularly, the HPNS at the optimal ratio with a low filler loading of 20 wt% exhibits the minimum reflection loss (RLmin) value of −62.39 dB at 13.28 GHz and the maximum effective absorption bandwidth (EABmax) is up to 5.36 GHz (12.64–18 GHz), and the corresponding thin matching thicknesses are 1.96 mm and 1.80 mm, respectively. Furthermore, the maximum radar cross section (RCS) reduction of HPNS over PEC reaches 26.02 dB m2 (1.96 mm) under far-field conditions, which means that the prepared HPNS is extraordinarily promising for practical applications. This work guides the preparation of high-performance EMW absorbers as well as radar stealth materials.  相似文献   

18.
Quartz ceramics with a uniform/gradient distribution of BaTiO3 (U/G–SO–BTO) are fabricated by cold pressing a powder blend with BTO followed by sintering and using a combined technique of spreading the powder blends with gradually increased BTO layer–by–layer and sintering. The electromagnetic wave absorption properties of these two ceramics are studied in detail. For U–SO–BTO samples, the primary electromagnetic reflection is strong due to the aggravated impedance mismatch at their surfaces. The electromagnetic wave reflectivity of U–SO–BTO could only reach ?7.0?dB when the sample thickness is 6?mm and the BTO content is 8.0?wt%, and it decreases slightly to ?8.1?dB when the sample thickness is increased to 10.0?mm and the BTO content is decreased to 5.0?wt% simultaneously. For G–SO–BTO samples, electromagnetic waves could enter with little reflection due to the weak surface impedance mismatch, and the electromagnetic waves entering these samples could propagate forward while being absorbed gradually with little reflection because of the weak impedance mismatch at the interfaces. The G–SO–BTO samples are promising excellent electromagnetic absorbing materials because their electromagnetic wave reflectivity could reach a level lower than ?12.0?dB and could decrease further from –12.2 to ?13.1?dB as the layer thickness increases from 1.0 to 2.0?mm.  相似文献   

19.
The application of carbon-based materials in microwave absorption (MA) field are limited due to the impedance mismatch caused by high permittivity and low permeability. In this work, Cu2O@nanoporous carbon (Cu2O@NPC) composites derived from Cu-based MOFs are synthesized using a simple method. Variation of C and Cu2O contents in Cu2O@NPC allows the regulation of permittivity and permeability, resulting in superior ultrabroad-bandwidth absorptivity. The maximum reflection loss (RL) of Cu2O@NPC-4 is up to ?31.1 dB at 5.6 GHz, while the effective bandwidth (RL ≤ ?10 dB) can reach 7.3 GHz (10.7–18 GHz) with a matching thickness of 1.85 mm. The results of this study open a new opportunity for solving the impedance mismatch of C-based materials and obtain ultrabroad effective bandwidth.  相似文献   

20.
《Ceramics International》2020,46(10):15925-15934
Herein, reduced graphene oxide/cobalt-zinc ferrite (RGO/Co0.5Zn0.5Fe2O4) hybrid nanocomposites were fabricated by a facile hydrothermal strategy. Results revealed that the contents of RGO could affect the micromorphology, electromagnetic parameters and electromagnetic wave absorption properties. As the contents of RGO increased in the as-synthesized hybrid nanocomposites, the dispersibility of the particles was improved. Meanwhile, numerously ferromagnetic Co0.5Zn0.5Fe2O4 particles were evenly anchored on the wrinkled surfaces of flaky RGO. Besides, the obtained hybrid nanocomposites exhibited superior electromagnetic absorption in both X and Ku bands, which was achieved by adjusting the RGO contents and matching thicknesses. Significantly, when the content of RGO was 7.4 wt%, the binary nanocomposites showed the optimal reflection loss of -73.9 dB at a thickness of 2.2 mm and broadest effective absorption bandwidth of 6.0 GHz (12.0–18.0 GHz) at a thin thickness of merely 2.0 mm. The enhanced electromagnetic absorption performance was primarily attributed to the multiple polarization effects, improved conduction loss caused by electron migration, and magnetic loss derived from ferromagnetic Co0.5Zn0.5Fe2O4 nanoparticles. Our results could provide inspiration for manufacturing graphene-based hybrid nanocomposites as high-efficient electromagnetic wave absorbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号