首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li6MgTiNb1?xVxO8F (0 ≤ x ≤ 0.08) ceramics were prepared using a solid-state reaction. The correlations between their sintering characteristics and the microwave dielectric performance as functions of V5+ substitution and sintering temperature were investigated systematically. Rietveld refinements of the X-ray diffraction data showed that all the samples had a cubic rock-salt structure. The Li6MgTiNbO8F ceramic sintered at 1175 °C exhibited an attractive Q × f value of 105,700 ± 1600 GHz. The substitution of V5+ for Nb5+ decreased the sintering temperature while improving the relative density and relative permittivity. The V-beared Li6MgTiNb0.98V0.02O8F ceramic sintered at 850 °C showed outstanding dielectric properties of εr = 18.14 ± 0.05, Q × f = 58,300 ± 1300 GHz, and τf = ?42.66 ± 0.33 ppm/°C. Good chemical compatibility with Ag electrodes highlighted the potential of the ceramic in low-temperature co-fired ceramic applications.  相似文献   

2.
In this study, crystal structure and microwave dielectric properties of phosphate CaMgP2O7 were comprehensively investigated. As a novel microwave dielectric ceramic, CaMgP2O7 consists of highly dense structure with optimal microwave dielectric properties (εr = 7.8 ± 0.124, Q×f = 13,165 ± 836 GHz, and τf = −85.04 ± 1.205 ppm/℃) at a low sintering temperature (950 ℃). The Rietveld refinement of XRD patterns revealed that CaMgP2O7 belongs to a triclinic system with P-1 symmetry type. Moreover, the substitution of Zn2+ for Mg2+ in CaMgP2O7 can further reduce the sintering temperature, effectively promote the densification process, and improve the Q×f value. The effects of porosity (or density) and chemical bond characteristics on the performance of CaMg1-xZnxP2O7 ceramics were carefully analyzed as well. Outstanding performance (εr = 8.05 ± 0.12, Q×f = 20,670 ± 923 GHz, and τf = −87.59 ± 3.24 ppm/℃) can be achieved for the CaMg0.84Zn0.16P2O7 ceramic sintered at 875 ℃ for 3 h.  相似文献   

3.
《Ceramics International》2022,48(16):22789-22798
(1-x)Li2Zn3Ti4O12-xSr3(VO4)2 (0.1 ≤ x ≤ 0.4) microwave dielectric ceramics were fabricated by solid-state sintering technology. The impact of SV addition on the microstructure, dielectric properties, sintering process, and defects behaviour was studied. The formation of SrTiO3 and the glass phase were observed via XRD and TEM, and the latter resulted in a decrease in the sintering temperature. The variations in microwave dielectric properties were consistent with the empirical mixture rules calculated by XRD refinement, and a near-zero τf value was obtained. The Li, Zn and V elements of the glass phase and the liquid phase sintering model were deduced via DSC, TEM and Raman spectroscopy. Then, the defect behaviour, such as oxygen vacancies, Ti3+, and V4+, was investigated by XPS and complex impedance spectroscopy. It was found that the generation and migration of defects occurred much more easily in 0.7LZT-0.3 SV than in LZT, resulting in a higher dielectric loss. Finally, the 0.7Li2Zn3Ti4O12-0.3Sr3(VO4)2 ceramic sintered at 900 °C exhibited excellent microwave dielectric properties of εr = 17.8, Q × f = 41,891 GHz, and τf = ?4.4 ppm/°C and good compatibility with silver electrode, showing a good potential application for LTCC.  相似文献   

4.
《Ceramics International》2022,48(1):199-204
MgNb2-xVx/2O6-1.25x (0.1≤x≤0.6) ceramics with orthorhombic columbite structures were prepared at low-temperature by a solid-phase process. The phase component, microscopic morphology, low-temperature sintering mechanism and microwave dielectric performance of MgNb2-xVx/2O6-1.25x ceramics were comprehensively investigated. Low-temperature sintering densification of dielectric ceramics was achieved via the nonstoichiometric substitution of vanadium (V) at the Nb-site. In contrast to pure MgNb2O6 ceramics, the sintering temperature of MgNb2-xVx/2O6-1.25x (x = 0.2) ceramics was reduced by nearly 300 °C owing to the liquid-phase assisted sintering mechanism. The liquid phase arises from the autogenous low-melting-point phase. Meanwhile, MgNb2-xVx/2O6-1.25x (x = 0.2) samples with nonstoichiometric substitution could achieve a more than 900% improvement in the Q × f value, compared with stoichiometrically MgNb2-xVxO6 (x = 0.1, 0.2) ceramics. Finally, MgNb2-xVx/2O6-1.25x dielectric ceramics possess outstanding microwave dielectric properties: εr = 20.5, Q × f = 91000, and τf = -65 ppm/°C when sintered at 1030 °C for x = 0.2, which provides an alternative material for LTCC technology and an effective approach for low-temperature sintering of Nb-based microwave dielectric ceramics.  相似文献   

5.
To satisfy the requirements of miniaturization and integration of microwave devices, microwave dielectric ceramics with low sintering temperatures and good microwave dielectric properties are particularly important for LTCC materials. In this study, low-cost BaB2O4 ceramics were prepared with different Ba/B ratios using a solid-phase method. Combined with the Raman spectra, the effects of the Raman shift and FWHM of the vibration peaks on the microwave dielectric properties were determined. As a novel microwave dielectric ceramic, BaB2O4 consists of a highly dense structure with optimal microwave dielectric properties (εr = 4.06, Q×f = 23845 GHz, and τf = −7.2 ppm/℃) at a low sintering temperature (840 ℃). In addition, BaB2O4 ceramic is chemically compatible with Ag, making it a promising candidate substrate for microwave communications.  相似文献   

6.
A novel high-efficiency dielectric patch antenna was fabricated using Sr3-xCaxV2O8 ceramics. A typically temperature-stable Sr3-xCaxV2O8 was achieved by tailoring the Ca2+ substitution to 30 mol% (x = 0.3), where well-balanced microwave dielectric properties were obtained (a near-zero value of +5.2 ppm/°C, a low εr ~ 13.4, and a moderate Q×f ~ 18,500 GHz). To manifest the application potentiality in wireless communication, a patch antenna was fabricated from the x = 0.3 ceramic based on the simulated result using the CST Microwave Studio software, and it showed a high simulated radiation efficiency (99.7%) and a gain (5.35 dBi) at 3.421 GHz. All results indicate that the Sr3-xCaxV2O8 ceramics have promising application potential for 5 G technology due to their prominent microwave dielectric properties, lightweight, and low cost.  相似文献   

7.
Cordierite-based dielectric ceramics with a lower dielectric constant would have significant application potential as dielectric resonator and filter materials for future ultra-low-latency 5G/6G millimeter-wave and terahertz communication. In this article, the phase structure, microstructure and microwave dielectric properties of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 (0 ≤ x ≤ 0.3) ceramics are studied by crystal structure refinement, scanning electron microscope (SEM), the theory of complex chemical bonds and infrared reflectance spectrum. Meanwhile, complex double-ions coordinated substitution and two-phase complex methods were used to improve its Q×f value and adjust its temperature coefficient. The Q×f values of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 single-phase ceramics are increased from 45,000 GHz@14.7 GHz (x = 0) to 150,500 GHz@14.5 GHz (x = 0.15) by replacing Al3+ with Zn2+-Mn4+. The positive frequency temperature coefficient additive TiO2 is used to prepare the temperature stable Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 composite ceramic. The composite ceramic of Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 (8.7 wt% ≤ y ≤ 10.6 wt%) presents the near-zero frequency temperature coefficient at 1225 °C sintering temperature: εr = 5.68, Q×f = 58,040 GHz, τf = ?3.1 ppm/°C (y = 8.7 wt%) and εr = 5.82, Q×f = 47,020 GHz, τf = +2.4 ppm/°C (y = 10.6 wt%). These findings demonstrate promising application prospects for 5 G and future microwave and millimeter-wave wireless communication technologies.  相似文献   

8.
In this study, Zn2+-substituted Li2MgSiO4 ceramics (Li2(Mg1-xZnx)SiO4, x = 0.00, 0.05, 0.10, 0.15, and 0.20) were synthesized using a traditional solid-state method. A fixed amount of LiF sintering aid (1.5 wt%) was added to the ceramics for decreasing the sintering temperature and adjusting their microwave dielectric properties. X-ray diffraction (XRD) results revealed no secondary phases, and scanning electron microscopy (SEM) data suggest that the Zn2+ ion substitution increased the size and uniformity of the grains, thereby affecting the densification of the prepared ceramics. The maximum bulk density (2.94 g/cm3) was found in a Zn2+ ion-substituted ceramic with x = 0.10 at a relative density of 94.2% (compared with the XRD theoretical density). Excellent microwave dielectric properties (εr = 6.28, Q × f = 50400 GHz, and τf = ?145 ppm/°C) can also be obtained at this zirconium content. We believe that the developed ceramics are promising for use as antenna substrates or transmit/receive modules in low-temperature co-firing ceramic applications.  相似文献   

9.
A low temperature co-fired dielectric material with low shrinkage during the sintering process can enhance the circuit design of electronic devices. Lithium aluminium borate composite ceramic with a composition of Li2O:Al2O3:B2O3 = 1:1:2 (abbreviated: LAB) was prepared by a traditional solid-state reaction method. These ceramics have a low sintering temperature (675–750 °C), low permittivity, and near-zero shrinkage. When the sintering temperature was 725 °C, the LAB ceramics exhibited a small shrinkage of ?2.4% and the best microwave dielectric properties with εr = 3.9, Q × f = 35 500 GHz, and τ?= ?64 ppm/°C. The LAB ceramics sintered at 700 °C have near-zero shrinkage of ? 0.4% and good microwave dielectric properties. The ceramics transformed from (Li2B4O7 and Al2O3) to (Li2Al2B4O10 and Li4Al4B6O17) phases with increasing the sintering temperature, which may be the reason why they show marginal shrinkage. In addition, the ceramics could be co-fired with Ag, indicating that this material is a good candidate for low-temperature co-fired ceramic devices.  相似文献   

10.
The sintering and microwave dielectric properties of a ceramic material based on the mixing of Mg3B2O6 and Zn3B2O6 have been widely studied using first-principles calculations and experimental solid-state reactions. Characterization methods include the Network Analyzer, X-ray, Raman diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and differential-thermal and thermo-mechanical analyzer. The increasing amount of Mg2+ results in the appearance of Mg2B2O5 and ZnO, and the mutual substitution (Mg2+ and Zn2+) phenomenon has emerged in Zn3B2O6 and Mg2B2O5. The mechanisms have been explained with the help of DFT calculations. The bond parameters and electron distributions of the ZnO4 tetrahedron and MgO6 octahedron have been modified due to substitution. The sintering, substitution, and phase formation properties have been analyzed quantitatively through the energy parameters. The best dielectric properties were obtained for x = 0.20 sintered at 950°C, εr = 6.47, Q × f = 89 600 GHz (15.2 GHz), τf = −48.6 ppm/°C, relative density = 96.7%. The mixing of Zn3B2O6 and Mg3B2O6 ceramics is a feasible method to obtain a ceramic with low sintering temperature and excellent dielectric properties.  相似文献   

11.
《Ceramics International》2022,48(14):20245-20250
There has been extensive research on microwave dielectric materials considering their application in 5G and 6G communication technologies. In this study, the sintering temperature range of Mg2TiO4–CeO2 (MT-C) ceramics was broadened using a composite of CeO2 and Mg2TiO4 ceramics, and their microwave dielectric performance was stabilized. Low-loss MT-C composite ceramics were prepared using the solid-phase reaction method, and their microwave dielectric properties, microscopic morphologies, and phase structures were investigated. The proposed MT-C ceramics contained Mg2TiO4 and CeO2 phases; their average grain size was maintained at 2–4 μm in the sintering temperature range of 1275–1425 °C, and the samples were uniformly dense without porosity. The cross-distribution of Mg2TiO4 and CeO2 grains in the samples inhibited the growth of ceramic grains, providing uniform and dense surfaces. The dielectric loss of MT-C ceramics remained constant in the temperature range of 1300–1425 °C at 9 × 10?4 (8.45 ≤ f ≤ 8.75 GHz). As opposed to the base material, MT-C ceramics are advantageous owing to their wide sintering temperature range and the stable microwave dielectric properties, and there are suitable substrate materials for further industrial applications.  相似文献   

12.
《Ceramics International》2007,33(6):951-955
The microwave dielectric properties of Sm(Zn1/2Ti1/2)O3 ceramics have been investigated. Sm(Zn1/2Ti1/2)O3 ceramics were prepared by conventional solid-state route with various sintering temperatures and times. The prepared Sm(Zn1/2Ti1/2)O3 exhibited a mixture of Zn and Ti showing 1:1 order in the B-site. Higher sintered density of 7.01 g/cm3 can be produced at 1310 °C for 2 h. The dielectric constant values (ɛr) of 22–31 and the Q × f values of 4700–37,000 (at 8 GHz) can be obtained when the sintering temperatures are in the range of 1250–1370 °C for 2 h. The temperature coefficient of resonant frequency τf was a function of sintering temperature. The ɛr value of 31, Q  ×  f value of 37,000 (at 8 GHz) and τf value of −19 ppm/°C were obtained for Sm(Zn1/2Ti1/2)O3 ceramics sintered at 1310 °C for 2 h. For applications of high selective microwave ceramic resonator, filter and antenna, Sm(Zn1/2Ti1/2)O3 is proposed as a suitable material candidate.  相似文献   

13.
《Ceramics International》2022,48(24):36433-36440
Microwave dielectric ceramics with simple composition, a low permittivity (εr), high quality factor (Q × f) and temperature stability, specifically in the ultrawide temperature range, are vital for millimetre-wave communication. Hence, in this study, the improvements in sintering behavior and microwave dielectric properties of the SnO2 ceramic with a porous microstructure were investigated. The relative density of the Sn1-xTixO2 ceramic (65.1%) was improved to 98.8%, and the optimal sintering temperature of Sn1-xTixO2 ceramics reduced from 1525 °C to 1325 °C when Sn4+ was substituted with Ti4+. Furthermore, the εr of Sn1-xTixO2 (0 ≤ x ≤ 1.0) ceramics increased gradually with the rise in x, which can be ascribed to the increase in ionic polarisability and rattling effects of (Sn1-xTix)4+. The intrinsic dielectric loss was mainly controlled by rc (Sn/Ti–O), and the negative τf of the SnO2 ceramic was optimised to near zero (x = 0.1) by the Ti4+ substitution for Sn4+. This study also explored the ideal microwave dielectric properties (εr = 13.7, Q × f = 40,700 GHz at 9.9 GHz, and τf = ?7.2 ppm/°C) of the Sn0.9Ti0.1O2 ceramic. Its optimal sintering temperature was decreased to 950 °C when the sintering aids (ZnO–B2O3 glass and LiF) were introduced. The Sn0.9Ti0.1O2-5 wt% LiF ceramic also exhibited excellent microwave dielectric properties (εr = 12.8, Q × f = 23,000 GHz at 10.5 GHz, and τf = ?17.1 ppm/°C). At the ultrawide temperature range (?150 °C to +125 °C), the τε of the Sn0.9Ti0.1O2-5 wt% LiF ceramic was +13.3 ppm/°C, indicating excellent temperature stability. The good chemical compatibility of the Sn0.9Ti0.1O2-5 wt% LiF ceramic and the Ag electrode demonstrates their potential application for millimetre-wave communication.  相似文献   

14.
Herein, the improvement of the microwave dielectric properties and sintering characteristics of Zn1?xBixVxW1?xO4(x = 0–0.15)-based ceramics is reported. The results showed that an appropriate amount of doping could not only reduce the optimum sintering temperature from 1100° to 900°C, but also enhance the densification of the microstructures and increase the Q×f value from 5351 to 42525 GHz. Additionally, various structural parameters including the phase composition, crystal structure, vibrational and chemical bond characteristics that are correlated with the dielectric properties were systematically investigated. By considering the chemical bond characteristics, the first-principles calculations and the acquired Raman spectra, the interaction between W-O is stronger than Zn-O in the ZnWO4 structure, while the interaction between V-O is stronger than Bi-O in BiVO4. Interestingly, when the Zn0.97Bi0.03V0.03W0.97O4-based ceramics were sintered at 900 °C, improved microwave dielectric properties were acquired (εr =18.32, Q×f=42525 GHz, τf=?67.51 ppm/°C), which provides a promising candidate in low-temperature co-fired ceramics technology.  相似文献   

15.
In this study, the (Ca0.95M0.05)V2O6 (M = Zn, Ba) and the CaV2O6 ceramics were synthesized through a solid-state reaction method, and the effects of Zn2+ and Ba2+ substitution on the structure, sintering temperature, densification, microstructure and microwave dielectric properties of CaV2O6 ceramic were analysed. The XRD patterns of the sintered samples indicated a single-phase of CaV2O6 in all temperatures. Substitution of Zn2+ caused a lower sintering temperature and improved the densification of the CaV2O6 ceramic. While the dielectric properties of the (Ca0.95Ba0.05)V2O6 compound were not desirable, the (Ca0.95Zn0.05)V2O6 sample sintered at 650°C for 4 hours showed significant dielectric properties, with εr = 10.29, Q × f ~  53 000 GHz (at 15.5 GHz) and τf = −72.37 ppm/°C. Moreover, the chemical compatibility of the CaV2O6 ceramic with Al electrode was examined.  相似文献   

16.
Because of large differences in the processing temperature windows between ceramics and polymers, the single-step co-sintering of microwave dielectric ceramic–polymer substrates remains challenging. In this work, a dense (Ca0.65Bi0.35)(Mo0.65V0.35)O4 (CBMVO) ceramic was first prepared through cold sintering at 150°C, under a uniaxial pressure of 300 MPa for 60 min with Li2MoO4 (LMO) as a transient low-temperature solvent. Cold-sintered CBMVO–5 wt% LMO ceramic shows excellent microwave dielectric properties: εr ∼ 11.4, Q × f ∼ 7070 GHz, τf ∼ −7.4 ppm/°C. Moreover, the optimized cold sintering process enabled the preparation of a layered co-sintered (2–2 type) CBMVO–polytetrafluoroethylene composite, which maintained excellent microwave dielectric properties and showed a good heterogeneous interface bonding. The proposed cold sintering co-firing of ceramic–polymer composites in a single step shows great potential for application in the seamless integration between ceramics and polymer substrates.  相似文献   

17.
Guangyu Dong  W. Li 《Ceramics International》2021,47(14):19955-19958
The sintering behavior, microstructure and microwave dielectric properties of Al2O3 ceramics co-doped with 3000ppmCuO2+6000ppmTiO2+500ppmMgO (Cu/Ti/Mg) have been investigated. The results show that 1 wt% Cu/Ti/Mg can reduce the sintering temperature of Al2O3 ceramics effectively. Samples with relative densities of ≥97% and uniform microstructure can be obtained when sintered at 1150 °C. Higher temperature can further increase the density of the sample, but it inevitably leads to abnormal grain growth. Meanwhile, the investigation results show that the low-firing Al2O3 ceramics have good microwave dielectric properties especially high Q × f value. A high Q × f value of 109616 GHz is able to be obtained for the 1150 °C sintered sample. The reason for the low temperature densification, abnormal grain growth behavior and the changing trend of the microwave dielectric properties are discussed in the paper.  相似文献   

18.
《Ceramics International》2020,46(11):18667-18674
Low temperature co-fired ceramics (LTCCs) technology plays an important role in modern wireless communication. Zn3-xCoxB2O6 (x = 0–0.25) low temperature fired ceramics were synthesized via traditional solid-state reaction method. Influences of Co2+ substitution on crystal phase composition, grain size, grain morphology, microwave dielectric properties, bond energy, and bond valence were investigated in detail. X-ray diffraction analysis indicated that the major phase of the ceramics was monoclinic Zn3(BO3)2. Solid solution was formed with Co2+ substituted for Zn2+ because no individual phase that contained Co was observed. An increase in the amount of Co2+ substitution changed average grain sizes, and regrowth of grains were observed with Co2+ substitution. Appropriate amount of Co2+ substitution improved densification. With changes in Co2+ substitution, bond energy of major phase and average bond valence of B–O were positively correlated to temperature coefficient of resonant frequency. The Zn2.927Co0.075B2O6 ceramic sintered at 875 °C for 4 h exhibited excellent microwave properties with εr = 6.79, Q × f = 140,402 GHz, and τf = −87.42 ppm/°C. This ceramic is regarded as candidate for LTCC applications.  相似文献   

19.
《Ceramics International》2022,48(21):31528-31536
In this work, a new Zn1-xNixMoO4 (ZNMO) (x = 0.03) ceramic with low-dielectric constant, low-loss, and low-sintering temperature for X-band two-dimensional (2D) beam splitting is developed by solid-state reaction method. This ceramic has excellent microwave dielectric properties of εr = 8.5, Q × f = 28192 GHz, τf = ?60.2 ppm/°C. The effects of Ni2+ substitution on the microwave dielectric properties of the ZnMoO4 ceramic are studied in detail through crystal structure analysis, Raman spectroscopy, and first-principles calculations. For the first time, an array antenna for X-band 2D electromagnetic beam splitting is designed by using this ceramic as a substrate. The effects of the dielectric constant and dielectric loss on the radiation efficiency of the array antenna are revealed. The normalized reflection amplitude and reflection phase of the unit cell exceed 0.97 and cover 360°, respectively. The function of 2D electromagnetic beam splitting is verified by the overall far-field pattern of the array antenna. This work has the opportunity to promote the development of LTCC and microwave dielectric ceramics.  相似文献   

20.
A new low loss spinel microwave dielectric ceramic with composition of ZnLi2/3Ti4/3O4 was synthesized by the conventional solid-state ceramic route. The ceramic can be well densified after sintering above 1075 °C for 2 h in air. X-ray diffraction data show that ZnLi2/3Ti4/3O4 ceramic has a cubic structure [Fd-3m (227)] similar to MgFe2O4 with lattice parameters of a = 8.40172 Å, V = 593.07 Å3, Z = 8 and ρ = 4.43 g/cm3. The best microwave dielectric properties can be obtained in ceramic with relative permittivity of 20.6, Q × f value of 106,700 GHz and τf value of −48 ppm/°C. The addition of BaCu(B2O5) (BCB) can effectively lower the sintering temperature from 1075 °C to 900 °C and does not induce much degradation of the microwave dielectric properties. Compatibility with Ag electrode indicates that the BCB added ZnLi2/3Ti4/3O4 ceramics are good candidates for LTCC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号