首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(12):14066-14070
Ultrahigh temperature ZrB2-SiCw-Graphene ceramic composites are fabricated by hot pressing ZrB2-SiCw-Graphene oxide powders at 1950 °C and 30 MPa for 1 h. The microstructures of the composites are characterized by Scanning electron microscopy, Raman spectroscopy and X-ray diffraction. The results show that multilayer graphene nanosheets are achieved by thermal reduction of graphene oxide during sintering process. Compared with monolithic ZrB2 materials, flexural strength and fracture toughness are both improved due to the synergistic effect of SiC whisker and graphene nanosheets. The toughening mechanisms mainly are the combination of SiC whisker and graphene nanosheets crack bridging, pulling out.  相似文献   

2.
A multiscale structural design was innovatively adopted herein to increase the toughness of monolithic HfB2 ceramics. SiC whiskers (SiCw) and graphene oxide (GO) were used as fillers for the HfB2 matrix, whereas a ductile W foil was introduced as an interlayer to synthesize laminated HfB2-SiCw-rGO/W ceramics. Monolithic HfB2-SiCp (particulate) and laminated HfB2-SiCp/W ceramics were prepared using the same routes and used as controls. Following tape casting and spark plasma sintering at 1800°C, the toughness of the prepared laminated HfB2-SiCw-rGO/W samples was increased to 14.2 ± 0.6 MPa·m1/2, with minimal sacrifice in flexural strength (421 ± 16 MPa). Morphological analysis of the fracture surface revealed the synergistic effects of micro-toughening (including bridging and pullout of whiskers and rGO) and macro-toughening (including crack deflection, bifurcation, and delamination) mechanisms responsible for improving the fracture toughness of the laminated HfB2-SiCw-rGO/W composites.  相似文献   

3.
ZrB2-based ceramics with SiCw were produced by hot pressing at 1750 °C for 1 h from mixed powders after adding liquid polycarbosilane. The obtained ZrB2-SiCw composites had toughness up to 7.57 MPa m1/2, which was much higher than those for monolithic ZrB2, SiC particles reinforced ZrB2 composites, and other ZrB2–SiCw composites directly sintered at high temperatures. The added liquid polycarbosilane could reduce the sintering temperatures and restrict the reaction of matrix with whisker, which led to fewer damages to the whisker and high fracture toughness.  相似文献   

4.
《Ceramics International》2020,46(7):8845-8852
Al2O3-SiCw toughened ceramic tools play vital role in high-speed machining of nickel-based superalloys due to their superior mechanical properties. Herein, owing to synergistic toughening mechanism, α-Si3N4 particles are employed as reinforcement phase into Al2O3-SiCw ceramic composite to optimize mechanical properties of Al2O3-SiCw ceramic tools. Moreover, the influence of Si3N4 content and sintering parameters on microstructure and mechanical properties of Al2O3-20 vol%SiCw ceramic tool material is systematically investigated. Results reveal that appropriate amount of Si3N4 particles is required to effectively increase the density of Al2O3-SiCw ceramic composites. The presence of Si3N4 particles leads to formation of novel β-sialon phase during hot-press sintering, which effectively enhances fracture toughness and flexural strength of Al2O3-SiCw ceramic composites. It is observed that grain size of newly formed β-sialon phase is extremely sensitive to hot-pressing sintering conditions. The degree of chemical transformation of α-Si3N4 into Si6-zAlzOzN8-z (β-sialon) and z-value of Si6-zAlzOzN8-z are significantly influenced by sintering temperature. Overall, Al2O3-20 vol%SiCw-15 vol%Si3N4 ceramic tool material, with 1.5 vol%Y2O3-0.5 vol%La2O3-0.5 vol%CeO2 (YLC) sintering additive, rendered optimal mechanical properties after sintering at 1600 °C under 32 MPa for 30 min. Improved mechanical performance can be ascribed to synergistic toughening and strengthening influence of whiskers and particles.  相似文献   

5.
《Ceramics International》2022,48(24):36273-36278
This work proposes a green method for synthesizing SiC nanowires (NWs) via the chemical vapor deposition (CVD) technique using coconut shell and silicon as raw materials. Using coconut shell as carbon source decreases the synthesis temperature of SiC. A large number of core-shell SiC NWs were obtained after firing at 1200 °C, a thin SiO2 layer is distributed on the outer shell of SiC NWs. The synthesized SiC NWs grow along the [111] direction, up to dozens of micrometers in length and diameters of 10–75 nm. However, the chain-bead structure of SiC NWs is formed after firing at 1400 °C due to the SiO2 bead embedded in SiC NWs. The synthesized core-shell SiC NWs fired at 1200 °C emit strong violet-blue light, which has good application prospects in optoelectronic devices.  相似文献   

6.
Mullite coating, SiC whiskers toughened mullite coating (SiCw-mullite), and cristobalite aluminum phosphate (c-AlPO4) particle modified SiCw-mullite coating (c-AlPO4-SiCw-mullite) were prepared on SiC coated C/SiC composites using a novel sol-gel method combined with air spraying. Results show that molten SiO2 formed by the oxidation of SiC whiskers and molten c-AlPO4 improved the bonding strength between mullite outer coating and SiC–C/SiC composites due to their high-temperature bonding properties. The bonding strength between mullite, SiCw-mullite, c-AlPO4-SiCw-mullite outer coatings and SiC–C/SiC composites were 2.41, 4.31, and 7.38 MPa, respectively. After 48 thermal cycles between 1773 K and room temperature, the weight loss of mullite/SiC coating coated C/SiC composites was up to 11.61%, while the weight losses of SiCw-mullite/SiC and c-AlPO4-SiCw-mullite/SiC coatings coated C/SiC composites were reduced to 7.40% and 5.12%, respectively. The addition of appropriate SiC whiskers can considerably improve the thermal shock resistance of mullite coating owing to their excellent mechanical properties at high temperature. In addition, c-AlPO4 particles can further improve the thermal shock resistance of SiCw-mullite coating due to their high-temperature bonding and sealing properties. No obvious micro-pores and cracks were observed on the surface of c-AlPO4-SiCw-mullite coating after 48 thermal cycles due to timely healing effect by formation of secondary mullite.  相似文献   

7.
《Ceramics International》2023,49(4):5700-5706
In the paper, the aluminosilicate fiber-reinforced zirconia (ASf/ZrO2) ceramic composites were successfully fabricated by polymer impregnation and pyrolysis (PIP) method. The microstructure and high-temperature mechanical properties of the original composites were well studied. The results revealed that the composites could maintain the stability of microstructure at 1000 °C. The flexural strength increased from 58.82 ± 2.83 MPa to 88.74 ± 6.20 MPa and the flexural modulus increased from 29.26 ± 4.67 GPa to 40.76 ± 8.76 GPa. The thermal exposure improved the interfacial bonding and made the load transfer more effective. After heat treatment from 1200 °C to 1400 °C, the flexural strength gradually declined due to the crystallization of the AS fibers and ZrO2 matrix, while the flexural modulus increased in a completely different trend. After heat treatment at 1400 °C, the composites could maintain a flexural strength of 66.95 ± 4.24 MPa with a flexural modulus of 60.42 ± 7.25 GPa. But the fracture mode gradually evolved to brittleness.  相似文献   

8.
《Ceramics International》2021,47(19):27188-27194
In this paper, 3 mol% yttria-doped tetragonal zirconia polycrystal material (3 mol% Y2O3–ZrO2) was prepared using an optimised pressureless sintering process. The phase change and particle size distribution of Y2O3–ZrO2 during sintering were studied, and the effect of sintering temperature on the properties of Y2O3–ZrO2 was analysed. The raw materials and prepared samples were analysed using XRD, Raman spectroscopy, SEM, and Gaussian mathematical fitting. The results show that sintering encourages the transformation of the monoclinic phase into the tetragonal phase, thus improving the crystallinity of the sample. The relative content of the tetragonal phase in the sample increased from 57.43% to 99.80% after sintering at 1200 °C for 1 h. In the range of sintering temperatures studied in this paper (800–1200 °C), the zirconia material sintered at 1000 °C presented the lowest porosity and the best density.  相似文献   

9.
《Ceramics International》2020,46(11):18965-18969
Silicon carbide ceramics were prepared by liquid-phase assisted oscillatory pressure sintering (OPS) with graphene and in-situ synthesized SiC whisker as the reinforcements. The effects of sintering temperature on the densification, morphology and mechanical performances of the SiCp-SiCw-graphene ceramics were investigated. In the temperature range from 1700 to 1800 °C, the densification rate of SiCp-SiCw-graphene ceramics was accelerated, ascribing to the reduction in viscosity of the glassy phase. At 1800 °C, the flexural strength and fracture toughness of the OPS ceramics corresponded to 697 MPa and 5.8 MPa m1/2, respectively, which were higher than that of the hot-pressed ceramics under the same temperature conditions. Multiphase toughening mechanisms, such as whisker bridging and pullout, graphene bridging and delamination, were considered as the primary mechanisms. This work demonstrates an effective strategy to prepare silicon carbide ceramics at low sintering temperature.  相似文献   

10.
《Ceramics International》2022,48(15):21951-21960
A high surface area is one of desired properties for yttria-zirconia (Y2O3–ZrO2) ceramic materials given their catalytic applications. The objective of this study is to develop high-surface-area Y2O3–ZrO2 materials by silicon (Si) modification and investigate the role of Si. Si-modified yttrium-zirconium hydroxides were prepared via a one-step precipitation process and calcined at 800 or 950 °C to form Si-modified Y2O3–ZrO2 (denoted as SiO2–Y2O3–ZrO2) materials containing 0-20 wt% Si as SiO2. These hydroxides or materials were characterized by 29Si NMR, XPS, TG-DSC, XRD, UV Raman, TEM, and N2 physisorption measurements. Si species uniformly distributed in the hydroxides tended to be enriched on the material surface at high temperatures. These Si species dominated by the silicates blocked the migration of Y and Zr atoms, which resisted the crystallite growth of Y2O3–ZrO2 components and reduced their crystallite size. Therefore, the SiO2–Y2O3–ZrO2 possessed a surface area of 59-112 m2/g after calcination at 950 °C for 9 h, which was significantly higher than that of the Y2O3–ZrO2 (23 m2/g). This study may stimulate ideas for developing high-surface-area crystalline ceramic materials calcined at high temperatures.  相似文献   

11.
The paper describes the structure and properties of preceramic paper-derived Ti3Al(Si)C2-based composites fabricated by spark plasma sintering. The effect of sintering temperature and pressure on microstructure and mechanical properties of the composites was studied. The microstructure and phase composition were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. It was found that at 1150 °C the sintering of materials with the MAX-phase content above 84 vol% leads to nearly dense composites. The partial decomposition of the Ti3Al(Si)C2 phase becomes stronger with the temperature increase from 1150 to 1350 °C. In this case, composite materials with more than 20 vol% of TiC were obtained. The paper-derived Ti3Al(Si)C2-based composites with the flexural strength > 900 MPa and fracture toughness of >5 MPa m1/2 were sintered at 1150 °C. The high values of flexural strength were attributed to fine microstructure and strengthening effect by secondary TiC and Al2O3 phases. The flexural strength and fracture toughness decrease with increase of the sintering temperature that is caused by phase composition and porosity of the composites. The hardness of composites increases from ~9.7 GPa (at 1150 °C) to ~11.2 GPa (at 1350 °C) due to higher content of TiC and Al2O3 phases.  相似文献   

12.
《Ceramics International》2021,47(19):27324-27333
In order to reduce the difficulty of preparing binder-less cemented carbide and further broaden its application prospects, tungsten carbide toughened by in situ elongated β-Sialon grains was developed via sintering ball-milled WC and α-Si3N4 powders using Al2O3–ZrO2 as a sintering aid and transformation additive. The two-step spark plasma sintering of the mixture at 1650 °C with dwelling at 1500 °C for 10 min was conducted under 30 MPa uniaxial pressure, and the densification behaviors, phase transformations, mechanical properties, and microstructures of the produced composites were investigated. The addition of Al2O3–ZrO2 reduced the initial temperature of the densification process by approximately 100 °C and its final temperature by 200 °C (compared with the densification temperatures of pure WC and Si3N4 materials) and fully transformed α-Si3N4 to Sialon (Si–Al–O–N) phases. Microstructural characterization data showed that the WC matrix contained homogeneously distributed equiaxed and elongated β-Si5AlON7 grains. The WC composites containing in situ elongated β-Sialon grains exhibited an optimal hardness of 18.93 ± 0.03 GPa and enhanced fracture toughness of 10.43 ± 0.27 MPa m1/2. The toughening mechanism of the β-Sialon phase involved the pull-out of elongated grains and crack bridging.  相似文献   

13.
《Ceramics International》2017,43(11):8236-8245
High-density monoclinic ZrO2 was manufactured through sintering at ~1200 °C by using nanosized powders. Then, the electrical conductivity was measured at a range of high temperatures (700–900 °C) by electrical impedance spectroscopy (EIS). For the as-sintered monoclinic ZrO2, the measured electrical conductivity was 3.2×10−5 s/cm (for 80% TD) and 4.4×10−5 s/cm (for 89% TD) at 900 °C. After aging at 900 °C for 100 h, the electrical conductivity of the monoclinic ZrO2 of 80%-TD decreased by more than 50%. However, after reheating at 1200 °C for 1 h, approximately 80% of the conductivity was recovered compared to the value of the as-sintered monoclinic ZrO2. The pure monoclinic crystal structure was retained despite the aging and reheating treatment. Based on microstructural observations of the aged and reheated monoclinic ZrO2, the changes in electrical conductivity after aging and reheating were explained by the formation and recovery of micro-cracks, respectively.  相似文献   

14.
《Ceramics International》2016,42(9):11165-11169
MoSi2 based materials have the potential for use in high temperature structural parts. In this work, WSi2 reinforced MoSi2 composites were successfully prepared by mechanical activation followed by in situ reactive spark plasma sintering of Mo, Si, and W elemental powders. Benefiting from the high energy raw materials prepared through ball milling, these mechanically activated reactants started to transform into MoSi2 at 1000 °C. Full density composites were obtained at a low sintering temperature (1200 °C) within 5 min. The addition of W to the reactants led to a finer microstructure than that obtained using pure MoSi2, resulting in a significant improvement of mechanical properties. The Vicker's hardness of 20 vol% WSi2/MoSi2 was as high as 16.47 GPa.  相似文献   

15.
《Ceramics International》2023,49(18):29829-29837
Customized porous Al2O3-ZrO2-mullite composites were designed and prepared by reaction sintering of zircon (ZrSiO4) and alumina (Al2O3) at sintering temperatures from 1400 to 1600 °C for 3 h. The mechanical properties, microstructural evolution, and reaction mechanisms of the composites were investigated. The reactions between ZrSiO4 and Al2O3 were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDS). The results indicate that ZrSiO4 and Al2O3 react and form ZrO2 and mullite. Sintering temperature has an important effect on the reaction process. At 1400 °C, Al2O3 reacts directly with SiO2 of ZrSiO4 to form mullite and ZrO2, which reduces the decomposition temperature of ZrSiO4 and promotes the decomposition of ZrSiO4. However, at 1600 °C, ZrSiO4 first decomposes to form SiO2 and ZrO2, and then generates mullite by the diffusion of Si. The migration of Si is the key factor for the formation of mullite. The thermal shock resistance of the composites can be significantly improved by phase transformation toughening of in-situ ZrO2. Therefore, increasing the proportion of ZrSiO4 can significantly improve the mechanical properties of sample. The residual ratio of the flexural strength after thermal shock exceeded 90%, when the mass ratio of ZrSiO4 to Al2O3 was 3:1. Besides, the addition of polymethyl methacrylate could improve the porosity of materials and has a direct effect on the thermal conductivity of composites.  相似文献   

16.
《Ceramics International》2015,41(8):9692-9700
Spark plasma sintering followed by hot isostatic pressing was applied for preparation of polycrystalline alumina with submicron grain size. The effect of additives known to influence both densification and grain growth of alumina, such as MgO, ZrO2 and Y2O3 on microstructure development was studied. In the reference undoped alumina the SPS resulted in some microstructure refinement in comparison to conventionally sintered materials. Relative density >99% was achieved at temperatures >1200 °C, but high temperatures led to rapid grain growth. Addition of 500 ppm of MgO, ZrO2 and Y2O3 led, under the same sintering conditions, to microstructure refinement, but inhibited densification. Doped materials with mean grain size <400 nm were prepared, but the relative density did not exceed 97.9%. Subsequent hot isostatic pressing (HIP) at 1200 and 1250 °C led to quick attainment of full density followed by rapid grain growth. The temperature of 1250 °C was required for complete densification of Y2O3 and ZrO2-doped polycrystalline alumina by HIP (relative density >99.8%), and resulted in fully dense opaque materials with mean grain size<500 nm.  相似文献   

17.
《Ceramics International》2017,43(9):7369-7373
Al−7Si−5Cu/Al2O3−ZrO2 composites with nacre-like structures were prepared via ice-templating and gas pressure infiltration techniques. The composites were subsequently heat-treated at 850 °C for 0, 30, 60, 90 and 120 min to regulate the interfacial reaction between Al and ZrO2. The yield of larger (Al1−m, Sim)3Zr and ZrSi2 phases increased with longer dwell times. The compressive strength initially increased and then decreased. The highest strength was observed in composites treated for 60 min and reached 1600±40, 1261±30 and 1033±22 MPa at temperatures of 20, 150 and 300 °C, respectively. These values increased by 30−40% as compared to those of the non-treated counterparts and were 2-, 5- and 12-fold more than those of the matrix alloy, respectively, which is demonstrative of the material's excellent load-bearing capacity, particularly at elevated temperatures.  相似文献   

18.
Depending on the recipe and the firing conditions, several non-oxides can be formed in Al2O3-C refractories. In this paper, the effect of the purity of the recipe components on the phase formation in Al2O3-C refractories with Al addition was investigated. Two test series were sintered from 800 °C to 1600 °C under air embedded in coke breeze. One test series was with brown fused alumina, and the other was with tabular alumina. At temperatures of up to 1200 °C the phase formation was the same for both recipes. For temperatures greater than 1400 °C, the impurities of brown fused alumina enhanced the formation of a polytype, while Al4O4C and Al28O21C6N6 were formed in the other series. The findings explain the occurrence of several non-oxides in disequilibrium at the chosen temperatures. The occurrence of Al4C3 was of particular interest due to its low hydration resistance. It was formed at 1200 °C.  相似文献   

19.
《Ceramics International》2016,42(6):7072-7079
The catalytic effect of ytterbium oxide (Yb2O3) on the nitriding reaction of Si compacts was investigated. Si powder mixtures containing Yb2O3 were prepared and nitrided in the form of compacts with a multi-step heating schedule over the range of 1200 °C–1450 °C. The nitriding profiles of the powder mixture with increasing temperature indicated that Yb2O3 clearly promoted the nitridation of Si compacts at 1200 °C compared with the pure Si compact containing no additives. The critical role of Yb2O3 on the nitridation of Si, was elucidated that Yb2O3 promotes the loss of initial SiO2 of the raw Si powder via the measurement of the weight changes at low temperature (1100 °C) and thermogravimetric analysis under N2 atmosphere. It was also found that the β-ratio of fully nitrided Si was closely related to the intermediate degree of nitridation at 1200 °C and 1300 °C.  相似文献   

20.
Environmental barrier coatings (EBCs) are used in commercial turbine engine applications as protection for ceramic matrix composites, yet the high-temperature water vapor reaction mechanism for EBC materials is not fully understood. Here, the water vapor reaction mechanism for barium strontium alumino-silicate (BSAS), an early generation EBC candidate, was determined from the time and temperature dependences of material loss. BSAS water vapor exposures were performed at 1200 °C, 1300 °C, and 1400 °C for 24, 48, and 72 h, at maximum gas velocities of ~ 240 m/s. FactSage thermodynamic calculations were shown to support the experimental findings, where the steam reaction mechanism consisted of volatilization of all BSAS oxide constituents as gaseous metal hydroxide species, i.e. Ba(OH)2, Sr(OH)2, Al(OH)3, and Si(OH)4 (g).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号