首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2017,43(18):16512-16517
In order to improve the thermal shock resistance of the coated carbon/carbon (C/C) composites, a mullite whisker toughened mullite coating was fabricated on the surface of SiC pre-coated C/C composites (SiC-C/C) by molten-salt method with a later hot dipping process. The phase compositions, surface and cross-section microstructures, high temperature thermal shock resistance of the as-prepared multi-layer coatings were investigated. Results show that the introduction of mullite whiskers can effectively improve the density of the mullite outer coating and decrease the cracking of the coating during the thermal shock cycle process. After 100 times thermal shock cycles between 1773 K and room temperature, only 1.87 × 10−3 g cm−2 weight loss has been detected, indicating the achievement of the excellent thermal shock resistance.  相似文献   

2.
Matrix modification is of great significance for the densification of CVI-SiC/SiC, as well as the improvement of self-healing and oxidation resistance. A eutectic component of Y2O3-Al2O3-SiO2 system modified with CaO (CYAS) was used in this study to modify SiC/SiC at 1400 °C. The oxidation behaviour of the composites was investigated under dry/water oxygen atmosphere at 900 °C and 1300 ℃. Compared to the relatively dense SiC/SiC, the modified SiC/SiC showed a slight increase in flexural strength and fracture toughness at room temperature, as well as a significant increase in oxidation resistance and densification. Our work provides a low-cost, simple-to-operate, short-cycle densification method for CVI-SiC/SiC composites that increases their oxidation resistance without compromising their mechanical properties at room temperature.  相似文献   

3.
4.
To improve the wear resistance of SiC coating on carbon/carbon (C/C) composites, SiC nanowires (SiCNWs) were introduced into the SiC wear resistant coating. The dense SiC nanowire-reinforced SiC coating (SiCNW-SiC coating) was prepared on C/C composites using a two-step method consisting of chemical vapor deposition and pack cementation. The incorporation of SiCNWs improved the fracture toughness of SiC coating, which is an advantage in wear resistance. Wear behavior of the as-prepared coatings was investigated at elevated temperatures. The results show that the wear resistance of SiCNW-SiC coating was improved significantly by introducing SiC nanowires. It is worth noting that the wear rate of SiCNW-SiC coating was an order of magnitude lower than that of the SiC coating without SiCNWs at 800 °C. The wear mechanisms of SiCNW-SiC coating at 800 °C were abrasive wear and delamination. Pullout and breakage of SiC grains resulted in failure of SiC coating without SiCNWs at 800 °C.  相似文献   

5.
《Ceramics International》2020,46(15):23785-23796
Carbon fibre reinforced CVI-SiC matrix (Cf/SiC) composite is well known for its superior properties such as low density, high specific modulus, high fracture toughness, and high temperature mechanical properties. In the present work, 2.5-Directional Cf/SiC composites with (PyC/SiC) n=4 multilayer interface having two different thicknesses with a density of ~2.1 g cm-3 are prepared through isobaric isothermal chemical vapour infiltration technique. High temperature tensile properties of the prepared composites with and without Si-B-C seal coating are studied and the results are presented. Samples prepared without seal coat exhibited a KICof ~ 30 MPa m1/2, and tensile strength of ≥200 MPa at room temperature. Si-B-C seal coated Cf/SiC composites has shown significant increase (28%) in high temperature tensile strength at 1200 °C and 1500 °C respectively compared to uncoated composites. Microstructural observations, XRD, and XPS studies support the observed thermomechanical behaviour of these composites at 1200 °C and 1500 °C.  相似文献   

6.
Silicon carbide Ceramic matrix composites (SiC matrix with SiC fibers, abbreviated as SiC/SiC composites) are widely used in aerospace and energy applications due to their excellent resistance to high temperatures, corrosion, wear, and low density. However, the difficult machinability and surface oxidation of SiC/SiC composites are the main factors restricting their further application. To address these issues, this paper explores a novel method for underwater femtosecond laser ablation of SiC/SiC composites to obtain high cleanliness, low-oxidation microporous surfaces. This paper systematically analyses the changes in hole depth, material removal rate (MRR), surface morphology, and material components during underwater femtosecond laser ablation of SiC/SiC composites, and explains the formation of typical features such as induced cones, small banded pits, fiber debonding and shedding. Our work provides new research ideas for understanding the removal mechanism and surface oxidation resistance of SiC/SiC composites.  相似文献   

7.
SiC/SiC复合材料及其应用   总被引:1,自引:0,他引:1  
日本开发的Nicalon和Tyranno两种品牌的SiC纤维占有世界上绝对性的市场份额。SiC/SiC复合材料典型的界面层是500 nm厚的单层热解碳(PyC)涂层或多层(PyC-SiC)n涂层,在湿度燃烧环境及中高温条件下界面层的稳定性是应用研究的重点。SiC/SiC复合材料,包括CVI-SiC基体和日本开发的Tyranno hex和NITE-SiC基体等,具有耐高温、耐氧化性和耐辐射性的特点,在航空涡轮发动机部件、航天热结构部件及核聚变反应堆炉第一壁材料等方面正开展工程研制应用。  相似文献   

8.
《Ceramics International》2022,48(24):36238-36248
Cf/SiC composite is an excellent structural and functional material, silicon carbide nanowires (SiCnws) are not only a toughening material but also a great application in the field of microwave absorption. In this study, SiCnws are grown on the surface of carbon fiber (Cf) by polymer impregnation and pyrolysis, and the SiC matrix was prepared by chemical vapor osmosis method. The SiCnws are introduced to enhance the mechanical and microwave absorption properties simultaneously. After 3 impregnations, the flexural strength of the composite was 107.35 ± 10 MPa. When the thickness is 1.86 mm, the minimum reflection loss value is ?41.08 dB, and the effective absorption bandwidth (RL ≤ ?10 dB) is 3.86 GHz. Furthermore, the microwave absorption mechanism of the material is discussed. This work provides a new method to prepare lightweight, stable and high-performance microwave absorption materials, and these materials are expected to be used in high temperature environments.  相似文献   

9.
《Ceramics International》2016,42(14):15811-15817
In this paper, a novel surface modification method for Cf/SiC composites is proposed. Si/SiC coating on Cf/SiC composites is prepared by tape casting and reaction bonding method. The effects of carbon content on the rheological property of the slurries along with the microstructure of the sintered coatings are investigated. The best result has been obtained by infiltrating liquid silicon into a porous green tape with a carbon density of 0.84 g/cm3. In addition, the effect of sintering parameters on the phase composition of the coatings is studied. Dense Si/SiC coating with high density as well as strong bonding onto the substrate is obtained. This Si/SiC coating exhibits an excellent mechanical property with HV hardness of 16.29±0.53 GPa and fracture toughness of 3.01±0.32 MPa m1/2. Fine surface with roughness (RMS) as low as 2.164 nm is achieved after precision grinding and polishing. This study inspires a novel and effective surface modification method for Cf/SiC composites.  相似文献   

10.
The effects of SiC coating and heat treatment on the emissivity were investigated for 2D C/SiC composites prepared by CVI in the 6–16 μm range. SiC coating had an obvious effect on the spectral emissivity of the composites but caused just 5% difference in the total emissivity. A radiation transport model was applied to explain those changes caused by SiC coating. Heat treatment affected the thermal radiation properties of the composites through the microstructure evolution. Base on the complementary analytical techniques, the changes in the emissivity were attributed to a good graphitization degree of carbon phases, large β-SiC grain sizes and high α-SiC content resulting in high emissivity.  相似文献   

11.
SiC and SiCw/SiC coatings were prepared on two-dimensional carbon fiber reinforced silicon carbide ceramic matrix composites (2D C/SiC), and strengthening/toughening of the composite by the coatings was investigated. After coating, the density of the C/SiC composites was increased effectively and the mechanical properties were improved significantly. Compared with SiC coating, SiCw/SiC coating showed the more significant effect on strength/toughness of the composites. Coatings had two effects: surface strengthening and matrix strengthening. The latter was the dominant effect. The surface strengthening can increase the crack initiation stress, while the matrix strengthening can enhance the crack propagation resistance. The former effect increased the strength and the latter effect increased the toughness.  相似文献   

12.
《Ceramics International》2017,43(11):8208-8213
In order to improve the oxidation behavior of carbon/carbon composites in a wide range of temperature, a new SiC/glaze-precursor coating was developed.The SiC layer was produced by slurry and sintering, while the glaze precursor layer was prepared by slurry and drying. The microstructures and phase compositions of the coating were analyzed by SEM and XRD, respectively. The oxidation resistance of the coated composites was investigated using both isothermal and temperature-programmed thermogravimetric analysis in the temperature range from room temperature to 1600 °C. The results showed that the oxidation behavior of the coating was mainly controlled by the diffusion of oxygen during the test.The coating showed excellent oxidation resistance and self-healing ability in a wide range of temperature.  相似文献   

13.
SiC coating was deposited on carbon/carbon (C/C) composites by chemical vapor deposition (CVD). The effects of elevated temperatures on tribological performance of SiC coating were investigated. The related microstructure and wear mechanism were analyzed. The results show that the as-deposited SiC coating consists of uniformity of β-SiC phase. The mild abrasive and slight adhesive wear were the main wear mechanisms at room temperature, and the SiC coating presented the maximum friction coefficient and the minimum wear rate. Slight oxidation of debris was occurred when the temperature rose to 300?°C. As the temperature was above 600?°C, dense oxide film formed on the worn surface. The silica tribo-film replaced the mechanical fracture and dominated the frication process. However, the aggravation of oxidation at elevated temperatures was responsible for the decrease of friction coefficient and the deterioration of wear rate. The SiC coating presented the minimum friction coefficient and the maximum wear rate when the temperature was 800?°C.  相似文献   

14.
Fatigue resistance and damage mechanisms of 2D woven SiC/SiC composites at high temperatures were investigated in this research. Fatigue behavior tests were performed at 1200℃ and 1000°C at 10 Hz and stress ratio of 0.1 for maximum stresses ranging from 80 to 120 MPa, and the fatigue run-out could be defined as 106 cycles. Evolution of the cumulative displacement and normalized modulus with cycles was analyzed for each fatigue condition. Fatigue run-out was achieved at 80 MPa and 1000°C. It could be found that the cycle lifetimes of the composites decreased sharply with the increasing maximum stress and temperature conditions significantly affected the fatigue performance under matrix cracking stress. The cumulative displacement showed no noticeable increase before 1000 cycles and the modulus of the failed specimens decreased before fracture. The retained properties of composites that achieved fatigue run-out, as well as the microstructures, were characterized in order to understand the fatigue behavior and failure mechanisms. The composites exhibited similar fracture morphology with matrix crack extension and glass phase oxidation formation under different conditions. In general, the high-temperature fatigue damage and failure of composites could be affected by combination of stress damage and oxidative embrittlement.  相似文献   

15.
To maintain the thermal stability of SiC nanowires during SiC coating fabrication process, carbon and SiC double protective layers were covered on the surface of nanowires. And SiC nanowires with double protective layers toughened SiC coating were prepared by pack cementation. The results showed that after introducing the SiC nanowires with double protective layers, the fracture toughness of the SiC coating was increased by 88.4 %. The coating protected C/C for 175 h with a mass loss of 3.67 %, and after 51 thermal shock cycles, the mass losses of the oxidized coating were 3.96 %. The double protective layers are beneficial to improve the thermal stability of nanowires, leading to good fracture toughness and thermal shock resistance of SiC coating. SiC nanowires consume the energy of crack propagation by fracture, pullout and bridging, leading to an increase in fracture toughness.  相似文献   

16.
Aimed to enhance the high-temperature service performance of C/SiC composites in high-speed aircraft thermal protection system, in this article, pitch-based carbon fibers were used to construct high thermal conductive channels to improve the heat transfer capability of C/SiC composites. The results revealed that the as-prepared composites equipped with 4.7 times higher thermal conductivity than that of conventional C/SiC composites. The oxyacetylene flame ablation test confirmed that the constructed high thermal conductive channels, which quickly conducted the heat flow from the ablation center area to other areas is the main reason of as-prepared composites exhibiting a very impressive ablation resistance property. Briefly, the ablation temperature of the as-prepared composite surfaces considerably dropped by about 300°C compared with conventional C/SiC composites, while the linear ablation rate and mass ablation rate of the composites are 1.27 μm/s and 0.61 mg/s respectively, which is superior to many recent reports, demonstrating that this article provides a simple but highly effective measure to improve the ablation resistance property of C/SiC composites.  相似文献   

17.
Oxidation protective SiC nanowires‐reinforced SiC (SiCNWs‐SiC) coating was prepared on pack cementation (PC) SiC‐coated carbon/carbon (C/C) composites by a simple chemical vapor deposition (CVD) process. This double‐layer SiCNWs‐SiC/PC SiC‐coating system on C/C composites not only has the advantages of SiC buffer layer but also has the toughening effects of SiCNWs. The microstructure and phase composition of the nanowires and the coatings were examined by SEM, TEM, and XRD. The single‐crystalline β‐SiC nanowires with twins and stacking faults were deposited uniformly and oriented randomly with diameter of 50‐200 nm and length ranging from several to tens micrometers. The dense SiCNWs‐SiC coating with some closed pores was obtained by SiC nanocrystals stacked tightly with each other on the surface of SiCNWs. After introducing SiCNWs in the coating system, the oxidation resistance is effectively improved. The oxidation test results showed that the weight loss of the SiCNWs‐SiC/PC SiC‐coated samples was 4.91% and 1.61% after oxidation at 1073 K for 8 hours and at 1473 K for 276 hours, respectively. No matter oxidation at which temperature, the SiCNWs‐SiC/PC SiC‐coating system has better anti‐oxidation property than the single‐layer PC SiC coating or the double‐layer CVD SiC/PC SiC coating without SiCNWs.  相似文献   

18.
In this study, the SiC/SiC-SiYC composites were fabricated via chemical vapor infiltration (CVI) combined with the reactive melt infiltration (RMI) process. The excellent infiltration of Si-Y alloy assisted in fabricating composites with a density of 2.94 g/cm3 and a porosity of only 2.0%. After 20 h of corrosion at 1300 °C in the water-oxygen environment, the generated oxide layer, consisting of a glass layer and a diffusion layer, effectively protected the composites, and the flexural strength retention is 114.2%. This study highlights the significant potential of Si-Y alloy as a modification phase that is resistant to water and oxygen. It also presents a novel approach for developing high-density ceramic matrix composites that are resistant to water-oxygen corrosion.  相似文献   

19.
The effect of single-layer pyrocarbon (PyC) and multilayered (PyC/SiC)n=4 interphases on the flexural strength of un-coated and SiC seal-coated stitched 2D carbon fiber reinforced silicon carbide (Cf/SiC) composites was investigated. The composites were prepared by I-CVI process. Flexural strength of the composites was measured at 1200 °C in air atmosphere. It was observed that irrespective of the type of interphase, the seal coated samples showed a higher value of flexural strength as compared to the uncoated samples. The flexural strength of 470 ± 12 MPa was observed for the seal coated Cf/SiC composite samples with multilayered interphase. The seal coated samples with single layer PyC interphase showed flexural strength of 370 ± 20 MPa. The fractured surfaces of tested samples were analyzed in detail to study the fracture phenomena. Based on microstructure-property relations, a mechanism has been proposed for the increase of flexural properties of Cf/SiC composites having multilayered interphase.  相似文献   

20.
Carbon fiber reinforced mullite (C/Mullite) composites with favorable mechanical properties have been fabricated through sol-impregnation-drying-heating (SIDH) route in our previous work. For the further optimization of fabrication technology, it is very necessary to elucidate the evolution of microstructure and properties of C/Mullite composites during SIDH process. For this purpose, C/Mullite composites were fabricated at different cycles through SIDH route in present paper, and the effect of fabrication cycles on microstructure, mechanical properties and oxidation resistance of the composites were investigated. The results show that mullite matrix grew on the surface of single carbon fiber firstly, then grew from inside to outside of carbon fiber bundle during fabrication. Finally, it grew completely on the surface of the composites and formed a “mullite coating”. Porosity of the composites decreased gradually and pores of the composites transformed from connected ones into isolated ones as the fabrication cycles increased. When the fabrication cycles reached 24, the porosity of the composites was unchanged basically. At the same time, the composites possessed the optimal mechanical properties and oxidation resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号