首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2020,46(13):20856-20864
In this work, we successfully synthesized series of LiNi0.5Mn1.5O4 (LNMO) cathode materials with spinel structure by using a facile sol-gel method and then calcined at various temperature ranging from 600 to 1000 °C. The application of different calcination temperatures significantly influenced the surface morphology, stoichiometry and crystalline nature of the as-synthesized LNMO material. According to the results of physical characterizations, the LNMO materials calcined at various temperatures mainly revealed the stoichiometric disordered Fd-3m structure with a small amount of well-ordered P4332 phase. The structural analysis also exhibited that the control of the calcination temperature contributed to the higher crystalline nature. Moreover, the morphological investigations indicated that the increasing calcination temperatures caused the formation of large micron-sized LNMO material. In turn, the electrochemical evaluations revealed the impact of the calcination temperatures on enhancing the electrochemical performances of the LNMO electrode materials up to 900 °C. The LNMO electrode calcined at 900 °C exhibited an impressive initial discharge specific capacity of ca. 142 mAh g−1 between 3.5 and 4.9 V vs. Li/Li+, and remarkably improved capacity retention of 97% over 50 cycles. Those excellent electrochemical properties were associated with the presence of the dominant Fd-3m phase over the P4332 phase. Additionally, the results of the corrosion and dissolution tests which were performed for all calcined LNMO materials in order to estimate the amount of manganese and nickel ions leached from them, proved that the micro-sized LNMO calcined at 900 °C was the most stable.  相似文献   

2.
Homemade nano-agglomerated powders 8YSZ powders for PS-PVD were prepared by the spray drying, then calcination processes at four different temperatures (500 °C, 700 °C, 900 °C and 1100 °C) were carried out on the spray-dried powders. Checked by laser particle sizer, scanning electron microscope (SEM) and X-ray diffraction (XRD), the physical properties, microstructure and phase constitutions of the calcined powders were investigated. The results show that the size of powders calcined at 500 °C is increased relative to the spray-dried powder, whereas the powders calcined at 700 °C, 900 °C and 1100 °C possess smaller size. The binding force of the primary particles tend to rise with the increase of calcination temperature. When the temperature was up to 900 °C and above, it was found that the sintering neck indicating with strong binding was formed between the primary particles. In parallel, the powders underwent an m-ZrO2 to t-ZrO2 transition as the calcination temperature rose. It is also found that the PS-PVD prepared coatings which were obtained by using the above powders undergo a transformation from a feather-like to a dense laminate structure as the calcination temperature rises. It is noteworthy that the coating obtained by the powders calcined at 700 °C have a special three-layer composite structure of near dense surface layer, columnar intermediate layer and dense sub-layer. The composite structural coating has excellent adhesion and thermal shock resistance, with a bonding strength of 81MPa and no major spalling when water quenched 100 cycles at 1100 °C.  相似文献   

3.
《Ceramics International》2020,46(12):20291-20298
BiYO3 powders were synthesized by the Pechini method under low-temperature conditions. When the heat treatment was performed at T < 600 °C, a mixture of tetragonal and cubic phases was obtained, while for T ≥ 600 °C, only the fluorite-like cubic phase was observed. Based on the Rietveld refinement, approximately 2% and 1% of the tetragonal phase remained in samples calcined at 400 °C and 500 °C for 1 h, respectively. The crystal size calculated for these samples was 4.4–48.1 nm, depending on the calcination temperature. The specific surface area of the samples diminished with heat treatment and reached a minimum at 800 °C. The band gap of samples with mixed phases was close to 2.16 eV and was ~2 eV for samples with a cubic phase. Photocatalytic tests demonstrate that BiY0.995Ni0.005O3 calcined at 800 °C had the best performance: it degraded more than 80% of the antibiotic oxytetracycline when irradiated with visible light. The Ni-doped BiYO3 material could degrade the antibiotic in tap water at an environmentally relevant concentration (μg L−1 levels) and showed steady activity throughout four reaction cycles.  相似文献   

4.
《Ceramics International》2017,43(10):7851-7860
This work reports the synthesis and characterization of mesoporous NiO/ZrO2-CeO2 composites. These materials are still being developed due to their excellent morphological and structural properties, especially for solid oxide fuel cells (SOFCs) anodes. A soft chemical route using a polymeric template was utilized to synthesize the samples. The structure after two different calcination processes at 400 °C and 540 °C was studied by X-ray diffraction and Rietveld refinement, before and after NiO loading. Nitrogen adsorption, scanning/transmission electron microscopy and small angle X-ray scattering revealed a nanocrystalline bi-phasic porous material. Temperature programmed reduction experiments showed higher Ni and Ce reduction values for samples calcined at 400 °C and 540 °C, respectively. Methane conversion values in the temperature range studied were similar for both calcination temperatures, showing 50% CH4 conversion around 550 °C and 80% around 650 °C. However, a sample calcined at 400 °C exhibited better morphological and textural properties leading to an enhancement in NiO and CeO2 reducibility that might be responsible for an improvement in oxygen surface exchange and gasification of carbon species in catalytic experiments.  相似文献   

5.
Low-temperature sintering of 12Pb(Ni1/3Sb2/3)O3–40PbZrO3–48PbTiO3 (12PNS–40PZ–48PT) calcined powders with V2O5 and excess PbO additives has been investigated. Adding 0.20 to 0.40 wt.% V2O5 and 1.0 wt.% excess PbO to 12PNS–40PZ–48PT calcined powders and sintering at 950 °C for 4 h, the sintered samples only contain the perovskite structure. The calcined powders are doped with 3.0 wt.% excess PbO and 0.20 to 1.0 wt.% V2O5 and sintered at 950 °C for 4 h, the coexistence of both tetragonal and rhombohedral phases with the minor phase of pyrochlore is observed. During the calcined powders contain 1.0 wt.% excess PbO and are sintered at 950 to 975 °C for 2 h, the bulk density decreases with V2O5 addition greater than 0.6 wt.%. When the calcined powders with 3.0 wt.% excess PbO are sintered at 900 to 975 °C for 2 h, the bulk density decreases with added V2O5 content increased. The values of the planar coupling coefficient (Kp) approach the maxima, namely, 0.51 obtained for the compacts containing 0.40 wt.% V2O5 and 1.0 wt.% excess PbO and sintered at 950 °C. As the calcined powders are added with 3.0 wt.% excess PbO and 0.80 wt.% V2O5 and sintered at 975 °C for 2 h, the maximum Qm value 1100 is obtained.  相似文献   

6.
The processing and characterisation of Pb(Mg1/3Nb2/3)O3 (PMN) materials, obtained either by spray-drying the solution of the precursors or by the conventional “columbite” method, were investigated and the morphological and micro-structural characteristics were compared. The acid solution of ammonium-peroxo-niobium complex, magnesium and lead nitrates was spray-dried and the precursor powder obtained was calcined at different temperatures ranging from 350 to 900 °C. The morphologies and the XRD patterns of the powders were compared. The calcined powders exhibited a pyrochlore phase above 400 °C converting into an almost pure perovskite phase at 800 °C. The powder calcined at 350, 500 and 800 °C were sintered at different temperatures, ranging from 950 to 1150 °C, always resulting in a pure perovskite PMN material. The XRD patterns of as-fired surfaces of samples sintered at 950 and 1050 °C showed an unwanted PbO phase together with the main PMN, nevertheless this secondary phase is not present in the ground surfaces. The high reactivity of sprayed powder is reflected in the formation and densification of pure perovskite PMN material with a faster process as regards the conventional one; in particular samples of about 96% theoretical density were obtained starting from the amorphous powder calcined at low temperature (350 °C) through a reaction sintering process. Furthermore, due to the better flowability of the spray-dried powder, the cold consolidation process is highly improved and no binder addition to powder is necessary.  相似文献   

7.
《Ceramics International》2021,47(20):28603-28613
Foam glass is a lightweight and high-strength building and decoration material with superior performance in heat insulation, sound absorption, moisture resistance and fire protection. The use of waste glass powder and fly ash to prepare foam glass is one of the most important ways to utilize solid waste as a resource. In this study, waste glass powder and fly ash were used as raw materials to prepare foam glass by a hydrothermal hot pressing–calcination method. The effects of fly ash content (0 wt%, 10 wt%, 20 wt%, 30 wt%), heating rate (1 °C/min, 3 °C/min, 5 °C/min, 8 °C/min, 10 °C/min) and calcination temperature (600 °C, 700 °C, 750 °C, 800 °C, 850 °C, 900 °C) on the microscopic morphology, density, compressive strength, porosity and other properties of the foam glass samples were studied. Their microstructure and morphology were analyzed by thermogravimetric analysis–mass spectrometry, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. At a fly ash content of 10 wt%, the heating rate was 5 °C/min, the calcination temperature was 800 °C, the foam glass density was 0.3 g/cm3, the compressive strength was 1.65 MPa, the total porosity was 75.5%, and the effective thermal conductivity was 0.206 W/m·K. The effective thermal conductivity models of the composite materials were used to verify the experimental data. The relationship between the thermal conductivity of foam glass materials and the related influencing factors was investigated.  相似文献   

8.
《Ceramics International》2020,46(13):21039-21045
This paper reports the structural and magnetic properties of a series of Y3Fe5-xNixO12 (x = 0, 0.05, 0.1, and 0.2) nanopowders synthesized by the citrate combustion method. We have discussed the change in different properties with the variation in calcination temperatures as well as the Ni ion substitution in yttrium iron garnet. X-ray diffraction study confirmed the desired garnet phase formation in all the calcined powders, and the crystallinity improved with an increase in calcination temperature. The crystallite sizes were observed in the range 47–52 nm and 84–94 nm for the samples calcined at 800 and 1000 °C, respectively. Scanning electron micrographs confirmed that the grains were in the nanometre range (132–170 nm) at 800 °C and increased (351–363 nm) at 1000 °C. Larger grains at high calcination temperature resulted in the enhanced saturation magnetization and a decrease in coercivity. Curie temperature (Tc) was observed in the range 558–560 K for all the calcined Y3Fe5-xNixO12 samples. Nickel substitution for iron sites in Y3Fe5-xNixO12 decreased the saturation magnetization and enhanced the coercivity. This could be related to the substitution of Ni ions for tetrahedral iron sites, which changed the magnetic exchange interactions of different lattice sites. The magnetic anisotropy constant (K) increases with the enhancement of calcination temperature, whereas it decreases with nickel ion substitution in Y3Fe5-xNixO12. This study suggests that the structural and magnetic properties can be tuned by Ni substitution for the Fe ions in Y3Fe5O12 garnets at different calcination temperatures, which make them promising candidates for various technological applications.  相似文献   

9.
Co3O4 nanofibers were prepared by an electrospinning method and characterized by differential thermal and thermal gravimetric analyzer (DTA‐TGA), X‐ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FT‐IR), and scanning electron microscopy (SEM). Xylene‐sensing properties of the as‐prepared nanofibers were also investigated in detail. The results showed that the morphology of the as‐prepared fibers was largely influenced by the calcination temperature. The Co3O4 nanofibers calcined at 500°C exhibited the highest response to xylene in a wide concentration range. Moreover, Co3O4 nanofibers calcined at 500°C also exhibited good selectivity, fast response (15 s) and recovery (22 s) rate at a low operating temperatures of 255°C. These properties make the fabricated nanofibers good candidates for xylene detection.  相似文献   

10.
Magnesium ferrite (MgFe2O4) nanostructures were successfully fabricated by electrospinning method. X-ray diffraction, FT-IR, scanning electron microscopy, and transmission electron microscopy revealed that calcination of the as-spun MgFe2O4/poly(vinyl pyrrolidone) (PVP) composite nanofibers at 500–800 °C in air for 2 h resulted in well-developed spinel MgFe2O4 nanostuctures. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature. Crystallite size of the nanoparticles contained in nanofibers increased from 15 ± 4 to 24 ± 3 nm when calcination temperature was increased from 500 to 800 °C. Room temperature magnetization results showed a ferromagnetic behavior of the calcined MgFe2O4/PVP composite nanofibers, having their specific saturation magnetization (M s) values of 17.0, 20.7, 25.7, and 31.1 emu/g at 10 Oe for the samples calcined at 500, 600, 700, and 800 °C, respectively. It is found that the increase in the tendency of M s is consistent with the enhancement of crystallinity, and the values of M s for the MgFe2O4 samples were observed to increase with increasing crystallite size.  相似文献   

11.
《Ceramics International》2015,41(7):8981-8987
Al2O3- and TiO2-based ceramic membranes prepared using polymeric synthesis route were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and gas permeability tests. The influence of the final calcination temperature and the systematic investigation of the properties of the membranes are provided. The calcination temperature affected morphological, structural and chemical properties, as well as the gas permeability of the ceramic membranes. XRD analysis revealed rhombohedral and tetragonal structures of Al2O3 and TiO2-based ceramic, respectively, prepared at calcination temperatures of 1100 and 1200 °C. The TiO2-based ceramic matrix calcined at temperatures of 1100 and 1200 °C exhibited a well-defined crystalline microstructure with the grains increasing in size as a function of temperature. FTIR analysis revealed that phosphorus additives in orthoclase clay tend to form phosphonate groups during the calcination process. The decomposition of organic source was not fulfilled as tested at calcination temperatures of 1000, 1100 and 1200 °C.  相似文献   

12.
A modified catecholate process has been applied to synthesize high purity barium titanate powders in the submicron range. A barium titanium-catechol complex, Ba[Ti(C6H4O2)3] was prepared from TiCl4, C6H4(OH)2 and BaCO3, freeze-dried, and calcined for 3 h at temperatures between 600 and 1300 °C. Phase transformation and crystallite size of the calcined powders were investigated as a function of the calcination temperature by X-ray diffraction methods, and particle morphology and size were studied by scanning electron microscopy. With increasing calcination temperature, BaTiO3 transformed from the (pseudo)cubic to the ferroelectric tetragonal phase. The tetragonality (c/a-1) increases with increasing calcination temperature and increasing crystallite size, respectively. Higher temperatures clearly favoured particle growth and the formation of large and hard agglomerates. The crystallite size of the tetragonal phase increased from <60 nm at 600–800 °C to 1237±344 nm at 1300 °C.  相似文献   

13.
《Ceramics International》2023,49(16):26635-26641
Nanocrystalline mixed oxides of cobalt and manganese with spinel structure were successfully synthesized via the self-combustion method using urea as fuel and tested as catalysts for the decomposition of the green monopropellant H2O2. The obtained powders were subjected to characterization by X-Ray Diffraction (XRD), Infrared Absorption Spectroscopy (FTIR), Thermogravimetric Analysis (TG), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). Additionally, the catalytic activity of the obtained samples was evaluated via measurements of the volume of gas produced and the drop test. The powder XRD analysis confirmed the crystallization of a single cubic spinel-type oxide for a higher cobalt content sample, molar Co:Mn ratio of 2:1, which presented the best catalytic performance, with faster reaction induction and a higher amount of gas produced. Additionally, the effect of calcination on the microstructural and catalytic properties was studied. The results indicate that further calcination at temperatures from 600 to 800 °C leads to a decrease in the catalytic activity, which is probably related to the loss of surface area. Only the sample calcined at 800 °C showed clear signs of particle sintering. Thus, self-combustion synthesis seems an exciting route to prepare catalysts with the required properties for application in small propulsive systems based on monopropellants, such as hydrogen peroxide.  相似文献   

14.
《Ceramics International》2021,47(24):34405-34413
The sintering behavior of 0.36BiScO3-0.64PbTiO3 (0.36BS-0.64 PT) ceramics was studied to investigate the effect of grain growth by the sillenite Bi12PbO19 (BP) phase on their piezoelectric properties for application in high-temperature piezoelectric devices. The BP phase formed during calcination at temperatures <750 °C led to a grain growth anomaly of the 0.36BS-0.64 PT ceramics sintered at 1000 °C. This phase assisted the grain growth of the 0.36BS-0.64 PT ceramics by liquid phase sintering. In particular, the 0.36BS-0.64 PT ceramic calcined at 700 °C exhibited excellent piezoelectric properties with a d33 of 531 pC/N, g33 of 41×10−3 Vm/N, kp of 61.8%, and Qm of 16. In addition, the 0.36BS-0.64 PT ceramics exhibited ferroelectric relaxor-like characteristics with an extremely large relaxation coefficient (γ) of 1.94 along with high maximum dielectric permittivity temperature (426 °C).  相似文献   

15.
《Ceramics International》2016,42(8):9949-9954
In this report, the effects of the calcination temperature of (K0.5Na0.5)NbO3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on the densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d33=128.3 pC/N, planar electromechanical coupling coefficient kp=32.2%, mechanical quality factor Qm=88, and dielectric loss tan δ=2.1%.  相似文献   

16.
《Ceramics International》2023,49(8):12293-12300
The two-step sintering of lead-free Ba0·85Ca0·15Zr0·1Ti0·9O3·(BCZT) ceramics was investigated as a way to enhance its piezoelectric properties. The variations in grain size as a function of the calcination and sintering conditions and its effect on performance is discussed. Results indicate that as the calcination and first-step sintering temperatures increased, grain size became large and was independent of the second sintering step. Large grains were responsible for the enhanced piezoelectric properties by causing lattice distortion, larger domains, and easy motion of domain walls. The BCZT ceramic calcined at 1200 °C and sintered at 1540 °C without holding and then cooled to 1400 °C and held at 1400 °C for 4 h exhibited optimal performance with the highest remnant polarization Pr ∼13.5 μC/cm2, the largest piezoelectric constant d33 ∼ 529 pC/N at room temperature, and the highest Curie temperature Tc ∼125 °C. Two-step sintering has been turned out to be an effective method to realize high-performance BCZT ceramics by microstructure optimization.  相似文献   

17.
Transparent lutetium titanate (Lu2Ti2O7) bodies were fabricated by spark plasma sintering using Lu2O3 and TiO2 powders calcined from 700 °C to 1200 °C. No solid-state reaction was identified after calcination at 700 °C, whereas single-phase Lu2Ti2O7 powder was prepared at 1100 and 1200 °C. The calcination at 700 °C promoted densification at the early stages of sintering, whereas residual pores at grain boundaries resulted in Lu2Ti2O7 bodies with low transparency. Low-density and opaque Lu2Ti2O7 bodies formed owing to the coarsening of the powder calcined at 1200 °C. The Lu2Ti2O7 body sintered using the powder calcined at the moderate temperature of 1100 °C had a density of 99.5% with the highest transmittances of 41% and 74% at wavelengths of 550 nm and 2000 nm, respectively.  相似文献   

18.
Zawrah  M. F.  Badr  Hayam A.  Khattab  R. M. 《SILICON》2020,12(5):1035-1042

The recycling of industrial waste clays for production of an interesting ceramic product is the main goal of the present research work. Ceramic bodies were prepared using Feeders or Cyclons waste clays, sand and feldspar. 0.0, 15, 20, and 25 wt.% of sand were added at the expanse of kaolin (75-50 wt.%). Constant mass percent (25 wt.%) of feldspar was added for all ceramic compositions. The designed batches were sintered at 1200–1400 °C. Physical properties were determined by water displacement method. Phase composition and microstructure were investigated by x-ray diffraction and scanning electron microscope, respectively. The compressive strength was also determined. The results indicated that the ceramic bodies prepared from Cyclons’ waste clay exhibited higher physical and mechanical properties than that prepared from Feeders’ clay after sintering at 1400 °C. The addition of sand enhances the porosity, water absorption, bulk density and mechanical strength after sintering at 1400 °C due to the formation of mullite network and glassy phases.

  相似文献   

19.
《Ceramics International》2017,43(15):11786-11791
Hollow Microspheres of SiO2-TiO2 photocatalysts whose walls are made up of mesoporous cellular foams were synthesized with the aid of hexane as a swelling agent and P123 as a pore template by an emulsion templating method. Pore structure of materials and crystal phase of titanium oxide was tailored by hydrothermal and calcination temperature during synthesis of samples. The samples were characterized with field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), N2 adsorption–desorption experiments, X-ray photoelectron spectroscopy (XPS) and X ray diffraction (XRD) techniques. The effect of pore structure and titania phase on photoactivity were evaluated by methylene blue (MB) degradation test under UV light as well. Results showed that hydrothermal temperature during synthesis process has a significant effect on pore and window sizes of mesostructured cellular foam. Interestingly, for the sample hydrothermally treated at higher temperature (130 °C), anatase to rutile transformation was avoided after calcination treatment as high as 800 °C. The highest photocatalytic activity was detected from the sample hydrothermally treated at 130 °C and calcined at 800 °C for which the highest degree of crystallinity and anatase phase as well as enhanced pore connectivity was obtained.  相似文献   

20.
《Ceramics International》2016,42(13):14992-14998
Mesoporous Zn and Pr modified SnO2-TiO2 mixed powders (Sn:Ti:Zn:Pr contents 60:20:15:5) have been prepared by a modified sol–gel method involving Tripropylamine (TPA) as chelating agent, TritonX100 as template and Polyvinylpyrrolidone as dispersant and stabilizer, respectively. The obtained gels have been dried at different temperatures and calcined in air at 600 and 800 °C, respectively. Phase identification of the synthesized samples and their evolution with the calcination temperature has been performed by X-ray diffraction. N2 adsorption/desorption isotherms were found to be characteristic for mesoporous materials, showing relatively low values for the specific surface area (15–32 m2 g−1) and nanometric sized pores. In case of the sample calcined at 800 °C, a bimodal pore size distribution can be observed, with maxima at 20 and 60 nm. SEM results demonstrate a porous nanocrystalline morphology stable up to 800 °C. The surface chemistry investigated by XPS reveals the presence of the elements on the surface as well as the oxidation states for the detected elements. At 800 °C a diffusion process of Sn from surface to the subsurface/bulk region accompanied by a segregation of Ti and Zn to the surface is noticed, while Pr content is unchanged. The sensing properties of the prepared powders for CO detection have been tested in the range of 250–2000 ppm and working temperatures of 227–477 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号