首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
With an appropriate high anneal temperature under H2 atmosphere, GaN quantum dots (QDs) have been fabricated via GaN thermal decomposition in metal organic chemical vapor deposition (MOCVD). Based on the characterization of atomic force microscopy (AFM), the obtained GaN QDs show good size distribution and have a low density of 2.4 × 108 cm-2. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the GaN QDs were formed without Ga droplets by thermal decomposition of GaN.  相似文献   

2.
The band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are measured by X-ray photoemission spectroscopy. A large forward-backward asymmetry is observed in the non-polar GaN/AlN and AlN/GaN heterojunctions. The valence-band offsets in the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are determined to be 1.33 ± 0.16 and 0.73 ± 0.16 eV, respectively. The large valence-band offset difference of 0.6 eV between the non-polar GaN/AlN and AlN/GaN heterojunctions is considered to be due to piezoelectric strain effect in the non-polar heterojunction overlayers.  相似文献   

3.
4.
ABSTRACT: Using measured capacitance-voltage curves with different gate lengths and current-voltage characteristics at low drain-to-source voltage for the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) of different drain-to-source distances, we found that the dominant scattering mechanism in the AlGaN/AlN/GaN HFETs is determined by the ratio of gate length to drain-to-source distance. For the devices with small ratio (here less than 1/2), the polarization Coulomb field scattering dominates the electron mobility. However, for the devices with large ratio (here more than 1/2), the LO phonon scattering and interface roughness scattering are dominant. The reason is closely related to the polarization Coulomb field scattering.  相似文献   

5.
In this paper, five-period InGaN/GaN multiple quantum well green light-emitting diodes (LEDs) were grown by metal organic chemical vapor deposition with 405-nm light beam in situ monitoring system. Based on the signal of 405-nm in situ monitoring system, the related information of growth rate, indium composition and interfacial quality of each InGaN/GaN QW were obtained, and thus, the growth conditions and structural parameters were optimized to grow high-quality InGaN/GaN green LED structure. Finally, a green LED with a wavelength of 509 nm was fabricated under the optimal parameters, which was also proved by ex situ characterization such as high-resolution X-ray diffraction, photoluminescence, and electroluminescence. The results demonstrated that short-wavelength in situ monitoring system was a quick and non-destroyed tool to provide the growth information on InGaN/GaN, which would accelerate the research and development of GaN-based green LEDs.  相似文献   

6.
MOCVD生长GaN的反应动力学分析与数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
徐谦  左然  张红 《化工学报》2009,60(2):384-388
提出了GaN生长的主反应和寄生化学反应模型,用主反应和与主反应平行进行的寄生反应来描述GaN的实际生长过程,并将此数值模拟得到的GaN沉积速率和文献中的实验数据进行了对比,发现与在实际MOCVD反应器上相同反应条件时得到的实验数据吻合较好。此外还发现TMGa浓度对GaN的生长速率有较大影响,但并非简单的线性关系。  相似文献   

7.
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.  相似文献   

8.
Epitaxial indium oxide (In2O3) films have been prepared on MgO (110) substrates by metal-organic chemical vapor deposition (MOCVD). The deposition temperature varies from 500 °C to 700 °C. The films deposited at each temperature display a cube-on-cube orientation relation with respect to the substrate. The In2O3 film deposited at 600 °C exhibits the best crystalline quality. A clear epitaxial relationship of In2O3 (110)|MgO (110) with In2O3 [001]|MgO [001] has been observed from the interface area between the film and the substrate. The average transmittance of the prepared films in the visible range is over 95%. The band gap of the obtained In2O3 films is about 3.55–3.70 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号