首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(13):14867-14872
A two-step process (milling and then heat treatment) was used for the preparation of α-Si3N4 nanopowder. The influence of the milling time and heat treatment temperature as processing parameters were investigated on the formation of α-Si3N4. Silicon nitride ceramic was produced by spark plasma sintering at 1700 °C for 15 min, using MgSiN2 additive. The optimum sample was produced in a 30 h milling time, heat treatment at 1300 °C, and a 22 °C/min heating rate conditions. X-ray fluorescence analysis showed that the purity of the final product is above 98%. Nanoindentation hardness and Young’s modulus of the SPS-ed sample were measured as 17±2.0 GPa and 290±11.0 GPa, respectively.  相似文献   

2.
《Ceramics International》2016,42(3):3745-3750
The process of densification and development of the microstructure of mullite–ZrO2/Y2O3 ceramics from mixture of Al2O3, SiO2, ZrO2 and Y2O3 by gradually adding of α–β Si3N4 nanopowder from 1 to 5 wt% by traditional and spark plasma sintering were investigated by means of differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and some ceramic and mechanical properties. The processes of DTA for all samples are characterised by a low-pitched endo-effect, when gradual mullite formation and noticeable densification at temperatures of 1200–1400 °C is started. It is testified by shrinkage and density both for traditionally and by SPS-sintered samples. The influence of the Si3N4 additive on the density characteristics is insignificant for both sintering cases. For SPS samples, the density reaches up to 3.33 g/cm3, while for traditionally sintered samples, the value is 2.55 g/cm3, and the compressive strength for SPS grows with Si3N4 additives, reaching 600 N/mm2. In the case of traditional sintering, it decreases to approximately 100 N/mm2. The basic microstructure of ceramic samples sintered in a traditional way and by SPS is created from mullite (or pseudo-mullite) crystalline formations with the incorporation of ZrO2 grains. The microstructure of ceramic samples sintered by SPS shows that mullite crystals are very densely arranged and they do not have the characteristic prismatic shape. The traditional sintering process causes the creation of voids in the microstructure, which, with an increasing amount of Si3N4 additive, are filled with mullite crystalline formations.  相似文献   

3.
In this study, α- and α/β-SiAlON materials, doped with Y2O3 and Nd2O3, were sintered using two different sintering processes: spark plasma sintering (SPS) and gas pressure sintering (GPS). The wear and mechanical properties of the samples were compared related to the composition, additives and sintering processes. The results show that the hardness was not affected by the processing type whereas the toughness values were lower for spark plasma sintered materials than gas pressure sintered materials. This can be explained by the changed microstructure of the two different types of material. Additionally, α/β-SiAlON materials, sintered using gas pressure sintering, showed a lower wear than the spark plasma sintered materials. The results of the wear test were compared with β-Si3N4 materials and it was observed that α/β-SiAlON, sintered by GPS, has better wear properties than the tested β-Si3N4 materials.  相似文献   

4.
《Ceramics International》2022,48(16):23151-23158
SiC composite ceramics have good mechanical properties. In this study, the effect of temperature on the microstructure and mechanical properties of SiC–TiB2 composite ceramics by solid-phase spark plasma sintering (SPS) was investigated. SiC–TiB2 composite ceramics were prepared by SPS method with graphite powder as sintering additive and kept at 1700 °C, 1750 °C, 1800 °C and 50 MPa for 10min.The experimental results show that the proper TiB2 addition can obviously increase the mechanical properties of SiC–TiB2 composite ceramics. Higher sintering temperature results in the aggregation and growth of second-phase TiB2 grains, which decreases the mechanical properties of SiC–TiB2 composite ceramics. Good mechanical properties were obtained at 1750 °C, with a density of 97.3%, Vickers hardness of 26.68 GPa, bending strength of 380 MPa and fracture toughness of 5.16 MPa m1/2.  相似文献   

5.
A dense SiC nanowires-toughened α-Si3N4 coating was prepared using a two-step technique for protecting porous Si3N4 ceramic against mechanical damage, and effect of SiC nanowires content on microstructures and properties of the coating were investigated. XRD, SEM and TEM analysis results revealed that as-prepared coatings consisted of α-Si3N4, O'-Sialon, SiC nanowires and Y–Al–Si–O–N glass phase. Furthermore, Vickers hardness of the coated porous Si3N4 ceramics increased gradually with the increasing SiC nanowires content from 0 to 10 wt%, which is attributed to the gradual improvement in intrinsic elastic modulus (E), hardness (H) and H3/E2 of the coatings. But, when the SiC nanowires content was 15 wt%, the thickness of the coating became relatively thinner, so that its protective ability was weakened and Vickers hardness started to decrease accordingly. Meanwhile, the assistance of SiC nanowires enhanced fracture toughness of the coatings obviously because SiC nanowires in the coatings can produce various toughening mechanisms during mechanical damage. When the SiC nanowires content was 10 wt%, its fracture toughness reached the maximum value, which was 6.27 ± 0.05 MPa·m1/2.  相似文献   

6.
《Ceramics International》2017,43(2):2150-2154
Sintered Si3N4 ceramics were prepared from an ɑ-Si3N4/β-Si3N4 whiskers composite powder in-situ synthesized via carbothermal reduction at 1400–1550 °C in a nitrogen atmosphere from SiO2, C, Ni, and NaCl mixture. Reaction temperatures and holding time for the composite powder, and mechanical properties of sintered Si3N4 were investigated. In the synthesized composite powder, the in-situ β-Si3N4 whiskers displayed an aspect ratio of 20–40 and a diameter of 60–150 nm, which was mainly dependent on the synthesis temperature and holding time. The flexural strength, fracture toughness and hardness of the sintered Si3N4 material reached 794±136 MPa, 8.60±1.33 MPa m1/2 and 19.00±0.87 GPa, respectively. The in-situ synthesized β-Si3N4 whiskers played a role in toughening and strengthening by whiskers pulling out and crack deflection.  相似文献   

7.
《Ceramics International》2022,48(8):11215-11227
The main aim of this study was to apply high-energy longer mechanical milling and spark plasma sintering (SPS) techniques to produce in-situ α-Ti/TiO2/TiC hybrid composites from commercially pure-Ti (CP–Ti, HCP structure) powders. The CP-Ti powders were subjected to different milling times (0, 20, 40, 60, 80, 100, and 120 h). The results showed that the powder samples milled for 120 h produced Ti, Ti3O5, TiO, TiO2 phases, and dissolved C atoms from the process control agent (toluene) which were then converted to α-Ti, TiO2, and TiC phases (formed in-situ composites) through spark plasma sintering. This was expected due to more reactivity in the 120 h sample as longer milling introduces severe and robust structural refinements. Structural evaluations with increasing milling time were carried out using XRD, HRSEM, and HRTEM. The synthesized powders were then consolidated by SPS at pressures of 50 MPa and 1323 K for 6 min. The micro-hardness results have shown that the hardness was started to increase from 1.40 GPa to 5.56 GPa with increasing milling time due to more dislocation and pinning effect produced by grain refinement and formed TiO2/TiC intermetallic particles enhancing the strength of α-Ti matrix. The α-Ti/TiO2/TiC in-situ hybrid composite bulk sample yielded an ultimate compressive strength of 1.594 GPa.  相似文献   

8.
ZrB2–SiC composites were fabricated by spark plasma sintering (SPS) using TaSi2 as sintering additive. The volume content of SiC was in a range of 10–30% and that of TaSi2 was 10–20% in the initial compositions. The composites could be densified at 1600 °C and the core–shell structure with the core being ZrB2 and the shell containing both Ta and Zr as (Zr,Ta)B2 appeared in the samples. When the sintering temperature was increased up to 1800 °C, only (Zr,Ta)B2 and SiC phases could be detected in the samples and the core–shell structure disappeared. Generally, the composites with core–shell structure and fine-grained microstructure showed the higher electrical conductivity and Vickers hardness. The completely solid soluted composites with coarse-grained microstructure had the higher thermal conductivity and Young's modulus.  相似文献   

9.
Nano hydroxyapatite (nHA)–zirconia (ZrO2) composites have been produced by spark plasma sintering (SPS). During the SPS process low temperatures (600–950 °C) and short dwelling time (5 min) have been applied to avoid the decomposition of nHA as well as the reaction between nHA and ZrO2. The grain size of the sintered composites was between 200 and 1000 nm. Carbon diffusion was induced from the graphite die and layered composite structure was formed. These observations might be related to the spark plasma sintering side effects. The microstructure and mechanical properties of high hydroxyapatite content zirconia composites have been found to be influenced and strongly correlated with the specialties of SPS method.  相似文献   

10.
The aim of this work was the analysis of the experimental results of a transparent alumina (BMA15) ceramic which was fabricated by Spark Plasma Sintering (SPS) from nanopowder (BMA15, Baikowski Chimie, France), at different temperatures (1200°C, 1250°C, 1300°C). With the application of a maximum uniaxial pressure of 73 MPa during all the fabrication-cycle (more than 3 hours). We sought an optimal sintering temperature combining better optical and mechanical properties of our pellets. The sintered alumina (BMA15) has a crystalline and dense microstructure. The samples sintered at 1200°C exhibit the best optical properties, in particular: good real inline transmission (RIT) and an optical gap greater than those of the samples sintered at 1250°C and 1300°C. Due to their low density, the Young modulus of alumina sintered at 1200 °C, deduced by ultrasound, has a low value which is about 385 GPa. Similarly, its small grain size gives it a better Vickers hardness ~ 21 GPa. Therefore, the value of the coefficient of friction μ stabilizes around the mean value of 0.21.  相似文献   

11.
Si3N4 ceramics with high thermal conductivity and outstanding mechanical properties were prepared by adding β-Si3N4 seeds and nanophase α-Si3N4 powders as modifiers. The introduction of β-Si3N4 seeds enhanced the growth of β-Si3N4 grains. Owing to the interlocked structure induced by the β-Si3N4 grains, the fracture toughness of Si3N4 ceramics reached a high value of 7.6 MPa·m1/2; also, the large-sized grains increased the contact possibility of Si3N4 grains, improving the thermal conductivity of Si3N4 ceramics (64 W/(m·K)). Because of the introduction of nanophase α-Si3N4, the flexural strength, fracture toughness, and thermal conductivity of the Si3N4 ceramics increased to 754 MPa, 7.2 MPa·m1/2, and 54 W/(m·K), respectively. According to the analysis of the growth kinetics of Si3N4 grains, the rapid growth of Si3N4 grains was ascribed to the reduction in the activation energy resulting from the introduction of β-Si3N4 seeds and nanophase α-Si3N4.  相似文献   

12.
Fully dense β-SiAlON ceramics with excellent mechanical properties and good thermal conductivity were fabricated by two-stage spark plasma sintering (SPS) processes without and with applying pressure respectively, using α-Si3N4 powder and 6 Al2O3-3 AlN-6 Y2O3 (in wt.%, label with 636), 424 and 422 additives. In the first stage SPS process without pressure, the relative dense β-SiAlON ceramics with interlock microstructures of elongated grains and density of 3.14˜3.18 g cm−3, hardness of 14.00˜14.82 GPa and fracture toughness of 6.00˜6.63 MPa m1/2 were obtained by sintering at about 1600 °C for 20 min. In the second stage SPS process at about 1425 °C for 5 min under pressure of 24 MPa, the fully dese β-SiAlON ceramics with density of 3.22˜3.24 g cm−3, high hardness of 15.68˜15.95 GPa, high fracture toughness of 6.38˜7.03 MPa m1/2 and thermal conductivity of 13.5˜19.6 Wm-1K-1 were obtained. The reaction between the samples and the graphite mold can be avoided in this fabrication method.  相似文献   

13.
We report the synthesis of a new class of Al2O3–WC nanocomposites for the first time by using metal–organic chemical vapor deposition process in a spouted bed followed by spark plasma sintering technique. The microstructure and mechanical properties of these prepared nanocomposites have been analyzed for various sintering parameters. From microstructure observation, it is found that the nanosized WC particles are dispersed within alumina matrix grains and intergrains. The microstructure of transgranular and step-wise fracture surface are found in these nanocomposites. The basic mechanical properties like density, hardness, and toughness also have been analyzed and the results are interpreted by correlating with that of corresponding microstructures.  相似文献   

14.
The influence of various rare-earth oxide additives and the addition of SiC nanoparticles on the thermal shock resistance of the Si3N4 based materials was investigated. The location of SiC particles inside the Si3N4 grains contributed to a higher level of residual stresses, which caused a failure at the lower temperature difference compared to the composites with a preferential location of the SiC at the grain boundaries. A critical temperature difference increased with an increasing ionic radius of RE3+ for both the composites and the monoliths. The critical temperature difference for the composite (580 °C) and the monolith (680 °C) sintered with La2O3 was significantly higher compared to the composite and the monolith doped with Lu2O3 (430 °C). A good agreement was found between the results of the critical temperature difference estimated by the indentation quench test and that obtained by the strength retention method.  相似文献   

15.
A Si3N4–ZrN wear-resistant self-healing composite material was developed. Si3N4–ZrN composite ultrafine powders were synthesized at a temperature of 1200 °С via solid-state reactions without milling and densified by spark plasma sintering at 1650 °C to a relative density of 97 ± 0.5%. Balls 13.494 mm in diameter for ball bearings manufactured by spark plasma sintering had a fine-grained structure with a grain size of 200–500 nm, Vickers hardness of 22.5 ± 1.8 GPa, and indentation fracture toughness of 6.2 ± 0.4 MPa. The tribological properties of the composite were investigated under static and dynamic loading. The self-healing capability of the Si3N4–ZrN composite was evaluated in the temperature range 500–550 °С. High-temperature three-point bending tests of notched specimens showed a bending strength of 383 ± 21 MPa at room temperature and 413 ± 30 MPa at 500 °С, which confirmed the self-healing of the composite.  相似文献   

16.
In this study, B4C–SiC–rGO composites with different SiC contents were prepared by spark plasma sintering at 1800 °C for 5 min under a uniaxial pressure of 50 MPa. The effects of SiC on the microstructures and mechanical properties of the B4C–SiC–rGO composites were investigated. The optimal values for flexural strength (545.25 ± 23 MPa) and fracture toughness (5.72 ± 0.13 MPa·m1/2) were obtained simultaneously when 15 wt.% SiC was added to 5 wt.%–GO reinforced B4C composites (BS15G5). It was found that SiC and rGO inhibited the grain growth of B4C and improved the mechanical properties of the B4C–SiC–rGO composites. The clear and narrow grain boundaries of rGO–B4C and rGO–SiC, as well as the semi-coherent B4C–SiC interface, indicated strong interface compatibility. The twin structures of SiC and B4C observed in the composites improved their fracture toughness. Crack deflection and crack bridging caused by the SiC grains as well as rGO bridging and rGO pull-out were observed on the crack propagation path.  相似文献   

17.
Porous β-Si3N4 ceramics with two distinct structures were produced by using two different Si3N4 sources to investigate the relationship between microstructure and permeability. Results showed that regardless of pore amount, size of pore channels, shape-distribution of β-Si3N4 grains are more effective on permeability of porous Si3N4 ceramics. Higher permeability and lower contribution of inertial forces was obtained by microstructure consists of coarse and equiaxed grains even at lower porosity amount. Calculated Forchheimer number (Fo) and measured the local breadth of a pore also supported the effect of microstructure on permeability.  相似文献   

18.
Bioactive beta-dicalcium silicate ceramics (β-Ca2SiO4) were fabricated by spark plasma sintering (SPS). The relative density of as-prepared β-Ca2SiO4 ceramics reached 98.1% when sintered at 1150 °C, leading to great improvement in bending strength (293 MPa), almost 10 times higher than that of the specimen prepared by conventional pressureless sintering (PLS). High fracture toughness (3.0 MPa m1/2) and Vickers hardness (5.8 GPa) of β-Ca2SiO4 ceramics were also achieved by SPS at 1150 °C. The simulated body fluid (SBF) results showed that β-Ca2SiO4 ceramics had a good in vitro bioactivity to induce hydraxyapatite (HAp) formation on their surface, which suggests that β-Ca2SiO4 ceramics are promising candidates for load-bearing bone implant materials.  相似文献   

19.
《Ceramics International》2016,42(6):7328-7335
Phase-pure BiFeO3 powders were synthesized by sol–gel technique. Based on these powders, high-density BiFeO3 ceramics were prepared by spark plasma sintering (SPS) at 700 °C along with annealing for 2 and 4 h, respectively, at 650 °C under atmospheres of air and oxygen. X-ray diffraction analysis revealed that the 4 h-oxygen-annealed sample contained a single rhombohedral perovskite phase while the samples annealed in the other conditions contained small quantities of impurity phases besides the rhombohedral perovskite phase. The relative density of the 4 h-oxygen-annealed sample was about 96%, being apparently higher than that of the other samples. In comparison with the 4 h-air-annealed sample, the dielectric constant of the 4 h-oxygen-annealed sample was relatively higher. The activation energy for electrical conduction was about 1.17 eV for the 4 h-oxygen-annealed sample while it was about 0.98 eV for the 4 h-air-annealed sample, showing that the former would have a lower room-temperature conductivity (~2.6×10−14 S cm−1) than the latter (~2.1×10−13 S cm−1). It is therefore anticipated that the oxygen-annealed sample could possess better ferroelectric properties as compared to the air-annealed sample.  相似文献   

20.
《Ceramics International》2016,42(3):3836-3848
The effects of applied pressure and temperature during spark plasma sintering (SPS) of additive-containing nanocrystalline silicon carbide on its densification, microstructure, and mechanical properties have been investigated. Both relative density and grain size are found to increase with temperature. Furthermore, with increase in pressure at constant temperature, the relative density improves significantly, whereas the grain size decreases. Reasonably high relative density (~96%) is achieved on carrying out SPS at 1300 °C under applied pressure of 75 MPa for 5 min, with a maximum of ~97.7% at 1500 °C under 50 MPa for 5 min. TEM studies have shown the presence of an amorphous phase at grain boundaries and triple points, which confirms the formation of liquid phase during sintering and its significant contribution to densification of SiC at relatively lower temperatures (≤1400 °C). The relative density decreases on raising the SPS temperature beyond 1500 °C, probably due to pores caused by vaporization of the liquid phase. Whereas β-SiC is observed in the microstructures for SPS carried out at temperatures ≤1500 °C, α-SiC evolves and its volume fraction increases with further increase in SPS temperatures. Both hardness and Young׳s modulus increase with increase in relative density, whereas indentation fracture toughness appears to be higher in case of two-phase microstructure containing α and β-SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号