首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of relative density on the hardness and fracture toughness of Al‐substituted cubic garnet Li6.19Al0.27La3Zr2O12 (LLZO) was investigated. Polycrystalline LLZO was made using solid‐state synthesis and hot‐pressing. The relative density was controlled by varying the densification time at fixed temperature (1050°C) and pressure (62 MPa). After hot‐pressing, the average grain size varied from approximately 2.7–3.7 μm for the 85% and 98% relative density samples, respectively. Examination of fracture surfaces revealed a transition from inter‐ to intragranular fracture as the relative density increased. The Vickers hardness increased with relative density up to 96%, above which the hardness was constant. At 98% relative density, the Vickers hardness was equal to the hardness measured by nanoindentation 9.1 GPa, which is estimated as the single‐crystal hardness value. An inverse correlation between relative density and fracture toughness was observed. The fracture toughness increased linearly from 0.97 to 2.37 MPa√m for the 98% and 85% relative density samples, respectively. It is suggested that crack deflection along grain boundaries can explain the increase in fracture toughness with decreasing relative density. It was also observed that the total ionic conductivity increased from 0.0094 to 0.34 mS/cm for the 85%–98% relative density samples, respectively. The results of this study suggest that the microstructure of LLZO must be optimized to maximize mechanical integrity and ionic conductivity.  相似文献   

2.
《Ceramics International》2016,42(10):12156-12160
Li7La3Zr2O12 (LLZO) has cubic garnet type structure and is a promising solid electrolyte for next-generation Li-ion batteries. In this work, Al-doped LLZO was prepared via conventional solid-state reaction. The effects of sintering temperature and Al doping content on the structure and Li-ion conductivity of LLZO were investigated. The phase composition of the products was confirmed to be cubic LLZO via XRD. The morphology and chemical composition of calcined powders were investigated with SEM, EDS, and TEM. The Li-ion conductivity was measured by AC impedance. The results indicated the optimum sintering temperature range is 800–950 °C, the appropriate molar ratio of LiOH·H2O, La(OH)3, ZrO2 and Al2O3 is 7.7:3:2:(0.2–0.4), and the Li-ion conductivity of LLZO sintered at 900 °C with 0.3 mol of Al-doped was 2.11×10−4 S cm−1 at 25 °C.  相似文献   

3.
The effect of hot‐pressing temperature on the microstructure and Li‐ion transport of Al‐doped, cubic Li7La3Zr2O12 (LLZO) was investigated. At fixed pressure (62 MPa), the relative density was 86%, 97%, and 99% when hot‐pressing at 900°C, 1000°C, and 1100°C, respectively. Electrochemical impedance spectroscopy showed that the percent grain‐boundary resistance decreased with increasing hot‐pressing temperature. Hot pressing at 1100°C resulted in a total conductivity of 0.37 mS/cm at room temperature where the grain boundaries contributed to 8% of the total resistance; one of the lowest grain‐boundary resistances reported. We believe hot pressing is an appealing technique to minimize grain‐boundary resistance and enable correlations between LLZO composition and bulk ionic conductivity.  相似文献   

4.
Li7La3Zr2O12 (LLZO) has been reported to react in humid air to form Li2CO3 on the surface, which decreases ionic conductivity. To study the reaction mechanism, 0.5‐mol Ta‐doped LLZO (0.5Ta–LLZO) pellets are exposed in dry (humidity ~5%) and humid air (humidity ~80%) for 6 weeks, respectively. After exposure in humid air, the formation of Li2CO3 on the pellet surface is confirmed experimentally and the room‐temperature ionic conductivity is found to drop from 6.45×10?4 S cm?1 to 3.61×10?4 S cm?1. Whereas for the 0.5Ta–LLZO samples exposed in dry air, the amount of formed Li2CO3 is much less and the ionic conductivity barely decreases. To further clarify the reaction mechanism of 0.5Ta–LLZO pellets with moisture, we decouple the reactions between 0.5Ta–LLZO with water and CO2 by immersing 0.5Ta–LLZO pellets in deionized water for 1 week and then exposing them to ambient air for another week. After immersion in deionized water, Li+/H+ exchange occurs and LiOH H2O forms on the surface, which is a necessary intermediate step for the Li2CO3 formation. Based on these observations, a reaction model is proposed and discussed.  相似文献   

5.
Cubic phase garnet-type Li7La3Zr2O12 (LLZO) is a promising solid electrolyte for highly safe Li-ion batteries. Al-doped LLZO (Al-LLZO) has been widely studied due to the low cost of Al2O3. The reported ionic conductivities were variable due to the complicated Al3+-Li+ substitution and LixAlOy segregation in Al-LLZO ceramics. This work prepared Li7?3xAlxLa3Zr2O12 (x = 0.00~0.40) ceramics via a conventional solid-state reaction method. The AC impedance and corresponding distribution of relaxation times (DRT) were analyzed combined with phase transformation, cross-sectional microstructure evolution, and grain boundary element mapping results for these Al-LLZO ceramics to understand the various ionic transportation levels in LLZO with different Al-doping amounts. The low conductivity in low Al-doped (0.12~0.28) LLZO originates from the slow Li+ ion migration (1.4~0.25 μs) in the cubic-tetragonal mixed phase. On the other hand, LiAlO2 and LaAlO3 segregation occur at the grain boundaries of high Al-doped (0.40) LLZO, resulting in a gradual Li+ ion jump (6.5 μs) over grain boundaries and low ionic conductivity. The Li6.04Al0.32La3Zr2O12 ceramic delivers the optimum Li+ ion conductivity of 1.7 × 10?4 S cm?1 at 25 °C.  相似文献   

6.
Rapid sintering of Li7La3Zr1.75Nb0.25Al0.15O12 (LLZO) is reported. The selection of heating elements, the effect of powder preparation and MgO additions in rapid sintered LLZO are described. Annealing LLZO powder at 750 ºC for 2 h in argon immediately before pressing helped to minimize porosity. A 15–20 s hold at 1372 ºC was sufficient to achieve densities >97%. The total sintering schedule time for rapid sintering represents a 99.7% decrease in sintering time compared to conventional sintering. At 70 °C under a pressure of 4.12 MPa cells had a critical current density of 1020 µA/cm2.  相似文献   

7.
《Ceramics International》2022,48(1):157-163
NASICON-type structured compounds Li1+xMxTi2-x(PO4)3 (M = Al, Fe, Y, etc.) have captured much attention due to their air stability, wide electrochemical window and high lithium ion conductivity. Especially, Li1.3Al0.3Ti1.7(PO4)3 (LATP) is a potential solid electrolyte due to its high ionic conductivity. However, its actual density usually has a certain gap with the theoretical density, leading the poor ionic conductivity of LATP. Herein, LATP solid electrolyte with series of SnO–P2O5–MgO (SPM, 0.4 wt%, 0.7 wt%, 1.0 wt%, 1.3 wt%) glass addition was successfully synthesized to improve the density and ionic conductivity. The SPM addition change Al/Ti–O bond and P–O bond distances, leading to gradual shrinkage of octahedral AlO6 and tetrahedral PO4. The bulk conductivity of the samples increases gradually with SPM glass addition from 0.4 wt% to 1.3 wt%. Both SPM and the second-phase LiTiPO5, caused by glass addition, are conducive to the improvement of compactness. The relative density of LATP samples increases first from 0 wt% to 0.7 wt%, and then decreases from 0.7 wt% to 1.3 wt% with SPM glass addition. The grain boundary conductivity also changes accordingly. Especially, the highest ionic conductivity of 2.45 × 10?4 S cm?1, and a relative density of 96.72% with a low activation energy of 0.34 eV is obtained in LATP with 0.7 wt% SPM. Increasing the density of LATP solid electrolyte is crucial to improve the ionic conductivity of electrolytes and SPM glass addition can promote the development of dense oxide ceramic electrolytes.  相似文献   

8.
All-solid-state Li batteries (ASSLBs) are regarded as the systems of choice for future electrochemical energy storage. Particularly, the garnet Li7La3Zr2O12 (LLZO) is one of the most promising solid electrolytes due to its stability against Li metal. However, its integration into ASSLBs is challenging due to high temperature and long dwell time required for sintering. Advanced sintering techniques, such as Ultrafast High-temperature Sintering, have shown to significantly increase the sintering rate. Direct contact to graphite heaters allows sintering of LLZO within 10 s due to extremely high heating rates (up to 104 K min?1) and temperatures up to 1500 °C to a density around 80 %. The LLZO sintered in vacuum and Ar atmosphere has good mechanical stability and high phase purity, but kinetic de-mixing at the grain boundaries was observed. Nevertheless, the Li-ion conductivity of 1 mS cm?1 at 80 °C was comparable to conventional sintering, but lower than for Field-Assisted Sintering Technique/Spark Plasma Sintering.  相似文献   

9.
LiTa2PO8(LTPO) has low electrolyte density and many pores at grain boundaries, and it is easy to precipitate dielectric phase LiTa3O8 at grain boundaries. The performance can be improved by adding 75Li2O-12.5B2O3-12.5SiO2 (LBS) sintering additive with low melting point during sintering. The effects of LBS addition on the microstructure and grain boundary ionic conductivity of LTPO electrolytes were studied. The results showed that the addition of LBS sintering additives reduced the sintering temperature, improved the density and stability of LTPO electrolyte samples, effectively inhibited the precipitation of LiTa3O8 phase, reduced the grain boundary impedance of samples, and improved the total ionic conductivity of electrolytes. When LBS was added at 0.4 wt%, the relative density of LTPO reached 93.54%, the grain boundary impedance decreased from 1243 Ω to 248.2 Ω, the total ionic conductivity increased from 1.55 × 10−4 S cm−1 to 6.51 × 10−4 S cm−1, and the ionic activation energy was 0.137 eV.  相似文献   

10.
Garnet-type Li7La3Zr2O12 (LLZO) Li+ ion solid electrolyte is a promising candidate for next generation high-safety solid-state batteries. Ga-doped LLZO exhibits excellent Li+ ion conductivity, higher than 1 × 10?3 S cm?1. In this research, the doping amount of Ga, the calcination temperature of Ga-LLZO primary powders, the sintering conditions and the evolution of grains are explored to demonstrate the optimum parameters to obtain a highly conductive ceramics reproducibly via conventional solid-state reaction methods under ambient air sintering atmosphere. Cubic LLZO phase is obtained for Li6.4Ga0.2La3Zr2O12 powder calcined at low temperature 850 °C. In addition, ceramic pellets sintered at 1100 °C for 320 min using this powder have relative densities higher than 94% and conductivities higher than 1.2 × 10?3 S cm?1 at 25 °C.  相似文献   

11.
The preparation of Ba0.85Ca0.15 Zr0.1Ti0.9O3 (BCZT) powders by wet chemical methods has been investigated, and the powders used to explore relationships between the microstructure and piezoelectric properties (d33 coefficient) of sintered BCZT ceramics. Sol–gel synthesis has been shown to be a successful method for the preparation of BCZT nanopowders with a pure tetragonal perovskite phase structure, specific surface area up to 21.8 m2/g and a mean particle size of 48 nm. These powders were suitable for the fabrication of dense BCZT ceramics with fine‐grain microstructures. The ceramics with the highest density of 95% theoretical density (TD) and grain size of 1.3 μm were prepared by uniaxial pressing followed by a two‐step sintering approach which contributed to the refinement of the BCTZ microstructure. A decrease in the grain size to 0.8–0.9 μm was achieved when samples were prepared using cold isostatic pressing. Using various sintering schedules, BCZT ceramics with broad range of grain sizes (0.8–60.5 μm) were prepared. The highest d33 = 410.8 ± 13.2 pC/N was exhibited by ceramics prepared from sol–gel powder sintered at 1425°C, with the relative density of 89.6%TD and grain size of 36 μm.  相似文献   

12.
Metallic doping can stabilize cubic phase Li7La3Zr2O12 (LLZO) solid electrolyte for high conductivity, due to the enhanced vacancies and disordered Li-site. However, the understanding of metallic doping in the crystal lattice during the high-temperature sintering process is still not clear. In present study, a gradient series of Fe doped LLZO are formulated via solid-phase reaction, and then investigated through crystal analysis and morphological characterization. Pair distribution function essay implies that doped Fe3+ promotes random distribution of Li+ over the available sites in the located crystal. Additionally, the ceramic morphology confirms that the particles sizes in LLZO pellets suddenly grow above 1000 ℃, and Fe doping can obviously suppress Li loss above 600 ℃. As a result, the LLZF0.15 exhibits the relatively high ionic conductivity of 1.99 × 10–5 S cm–1 at 45 ℃.  相似文献   

13.
Ti2AlCx ceramic was produced by reactive hot pressing (RHP) of Ti:Al:C powder mixtures with a molar ratio of 2:1:1–.5 at 10–20 MPa, 1200–1300°C for 60 min. X-ray diffraction analysis confirmed the Ti2AlC with TiC, Ti3Al as minor phases in samples produced at 10–20 MPa, 1200°C. The samples RHPed at 10 MPa, 1300°C exhibited ≥95 vol.% Ti2AlC with TiC as a minor phase. The density of samples increased from 3.69 to 4.04 g/cm3 at 10 MPa, 1200°C, whereas an increase of pressure to 20 MPa resulted from 3.84 to 4.07 g/cm3 (2:1:1 to 2:1:.5). The samples made at 10 MPa, 1300°C exhibited a density from 3.95 to 4.07 g/cm3. Reaction and densification were studied for 2Ti–Al–.67C composition at 10 MPa, 700–1300°C for 5 min showed the formation of Ti–Al intermetallic and TiC phases up to 900°C with Ti, Al, and carbon. The appearance of the Ti2AlC phase was ≥1000°C; further, as the temperature increased, Ti2AlC peak intensity was raised, and other phase intensities were reduced. The sample made at 700°C showed a density of 2.87 g/cm3, whereas at 1300°C it exhibited 3.98 g/cm3; further, soaking for 60 min resulted in a density of 4.07 g/cm3. Microhardness and flexural strength of Ti2AlC0.8 sample were 5.81 ± .21 GPa and 445 ± 35 MPa.  相似文献   

14.
The as-sintered Zn1−xAlxO (0  x  0.05) samples crystallized in the ZnO with a wurtzite structure, along with a small amount of the cubic spinel ZnAl2O4. The addition of Al2O3 to ZnO gave rise to a decrease in grain size, ranging from 7.3 to 2.7 μm and in relative density, ranging from 99.2 to 90.1% of the theoretical density. In the Zn0.97Al0.03−yTiyO samples, as the amount of TiO2 increased, the grain size of ZnO grains and second phases, such as Zn2TiO4 and ZnAl2O4, as well as density increased. The co-doping of Al and Ti led to a significant increase in both the electrical conductivity and the absolute value of the Seebeck coefficient, resulting in an increase in the power factor. The highest value of power factor (3.8 × 10−4 W m−1 K−2) was attained for Zn0.97Al0.02Ti0.01O at 800 °C. It is demonstrated that the Al and Ti co-doping is fairly effective for enhancing thermoelectric properties.  相似文献   

15.
Aluminum oxynitride (AlON) ceramics doped with different sintering aids were synthesized by spark plasma sintering process. The microstructures, mechanical, and optical properties of the ceramics were investigated. The results indicate that the optimal amount of sintering aids is 0.06 wt% La2O3 + 0.16 wt% Y2O3 + 0.30 wt% MgO. The addition of La3+ and Mg2+ decreases the rate of grain boundary migration in ceramics, promotes pore elimination, and inhibits grain growth. The addition of Y3+ facilitates liquid-phase sintering of AlON ceramics. Moreover, the addition of Mg2+ effectively promotes twin formation in the ceramics, which hinders crack propagation and dislocation motion when the ceramics are loaded. Hence, the AlON ceramic doped with 0.06 wt% La2O3 + 0.16 wt% Y2O3 + 0.30 wt% MgO exhibits a relative density of 99.95%, an average grain size of 9.42 μm, and a twin boundary content of 10.3%, which contributes to its excellent mechanical and optical properties.  相似文献   

16.
The high sintering temperature required for aluminum nitride (AlN) at typically 1800 °C, is an impediment to its development as an engineering material. Spark plasma sintering (SPS) of AlN is carried out with samarium oxide (Sm2O3) as sintering additive at a sintering temperature as low as 1500–1600 °C. The effect of sintering temperature and SPS cycle on the microstructure and performance of AlN is studied. There appears to be a direct correlation between SPS temperature and number of repeated SPS sintering cycle per sample with the density of the final sintered sample. The addition of Sm2O3 as a sintering aid (1 and 3 wt.%) improves the properties and density of AlN noticeably. Thermal conductivity of AlN samples improves with increase in number of SPS cycle (maximum of 2) and sintering temperature (up to 1600 °C). Thermal conductivity is found to be greatly improved with the presence of Sm2O3 as sintering additive, with a thermal conductivity value about 118 W m−1 K−1) for the 3 wt.% Sm2O3-doped AlN sample SPS at 1500 °C for 3 min. Dielectric constant of the sintered AlN samples is dependent on the relative density of the samples. The number of repeated SPS cycle and sintering aid do not, however, cause significant elevation of the dielectric constant of the final sintered samples. Microstructures of the AlN samples show that, densification of AlN sample is effectively enhanced through increase in the operating SPS temperature and the employment of multiple SPS cycles. Addition of Sm2O3 greatly improves the densification of AlN sample while maintaining a fine grain structure. The Sm2O3 dopant modifies the microstructures to decidedly faceted AlN grains, resulting in the flattening of AlN–AlN grain contacts.  相似文献   

17.
《Ceramics International》2022,48(21):31315-31325
Garnet-type Li7La3Zr2O12 (LLZO) is one of the most promising solid-state electrolytes (SSEs) for advanced solid-state lithium batteries (SSLBs). In this work, Li6.25Al0.25La3Zr2O12, Li6.4Ga0.2La3Zr2O12, and Li6.4La3Zr1.4Ta0.6O12 ceramics are prepared by a modified wet chemical route. The composition of the black mixtures derived from the precursors is ascertained. The phase evolution and structural properties from the ceramic mother powders to the final ceramic electrolytes are discussed in detail. The characteristic of cubic LLZO with the space group I-43d arises in the Li6.4Ga0.2La3Zr2O12 ceramic electrolyte pellet after the secondary higher-temperature (1200 °C) sintering. The Rietveld refinement reveals the roles of Al3+ substitution at the Li+ sites and Ta5+ substitution at the Zr4+ sites to adjust crystal structure. In addition, the electrochemical performance of the ceramic pellets is also investigated. Remarkably, the Li6.4La3Zr1.4Ta0.6O12 ceramic electrolyte has the most outstanding electrochemical performance, showing the high ionic conductivity of 6.88 × 10?4 S cm?1 (25 °C), the low activation energy of 0.42 eV and an extremely low electronic conductivity of 1.77 × 10?8 S cm?1 (25 °C). Overall, it is supposed that this work may help to achieve high-quality modified LLZO ceramic electrolytes, especially using the wet chemical strategy.  相似文献   

18.
Microporous MgO-Mg(Al, Fe)2O4 refractory aggregates were prepared using magnesite, Al(OH)3 and Fe2O3 applying an in-situ decomposition synthesis method. At 1400–1600 °C, there was a Mg(Al, Fe)2O4 with Fe3+, which had two structures. One was a ring structure formed from Al(OH)3 pseudomorph particle as a template and a low content of Fe3+. The other was the dot and strip structures precipitated in magnesite pseudomorph particles with a high content of Fe3+. Besides, at 1550–1600 °C, microporous MgO-Mg(Al, Fe)2O4 refractory aggregates had an excellent compressive strength (75.8–81.5 MPa) and apparent porosity (26.8%?28.2%).  相似文献   

19.
《Ceramics International》2022,48(18):25933-25939
In order to gain more insights into the influence of rare earth elements on the melt structure of SiO2–CaO–Al2O3–MgO glass ceramics, Raman and X-ray photoelectron spectroscopy techniques were used to study the influence of La2O3 on the Si–O/Al–O tetrahedron structure within SiO2–CaO–Al2O3–MgO–quenched glass samples in this study. Results showed that some Raman peak shapes at low frequencies (200–840 cm?1) changed significantly after the addition of La2O3, compared to the high frequency (840–1200 cm?1) region that corresponds to the [SiO4] structure, suggesting that the depolymerization of the low-frequency T–O–T (T=Si or Al) structure was more prevalent with La3+ addition. Besides, the depolymerization extent of the Si–O/Al–O tetrahedral network varied when the melt composition altered. Most notably, depolymerization is the most significant at a low CaO/SiO2 ratio (0.25) and a high Al2O3 content (8%). Meanwhile, La3+ can promote the transformation of Si–O–Si and Al–O–Al bonds to the Si–O–Al ones, thereby forming a complex ionic cluster network interwoven with Si–O and Al–O tetrahedrons.  相似文献   

20.
Solid solutions Mg0.1Al1.8Ti1.1O5 and Mg0.5AlTi1.5O5 were obtained by reaction sintering of mixtures of the binary oxides at 1350–1600 °C using different precursor powders. For the composition Mg0.1Al1.8Ti1.1O5, ceramics sintered at 1400–1500 °C have high relative density (⩾90%), reduced grain size (2–6 μm), low thermal expansion (−0.8 to 0.3×10−6 K−1 in the range 200–1000 °C) and reproducible expansion behaviour. At higher temperature, grain size rapidly increases owing to anisotropic and exaggerated grain growth (EGG) resulting in severe microcracking. Microstructure evolution is affected by the nature of the starting oxides, in particular for what concerns the onset temperature of EGG, the size and the fraction of abnormal grains. For the composition Mg0.5AlTi1.5O5, EGG already takes place at 1350 °C and materials with grain size < 5 μm are difficult to obtain by conventional reaction sintering. Large grained samples (>10 μm) of both compositions show a reduced hysteresis and complex thermal expansion behaviour. In particular, heating to 1000 °C results in a significant increase in specimen size on return to room temperature. Repeated thermal cycling leads to an increase of the hysteresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号