首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Dyes and Pigments》2012,92(3):501-507
Mn-doped YInO3 blue pigments have been synthesised at a much lower temperature (1100 °C) than that required by the traditional solid state method (1400 °C). The developed procedure, which is based on the pyrolysis at 600 °C of aerosols generated from aqueous solutions of Y, In and Mn nitrates followed by an annealing treatment at 1100 °C, yields spherical pigments particles with heterogeneous size in the optimum range required for ceramic applications (<10 μm). The amount of Mn introduced in the YInO3 matrix has been systematically varied in order to evaluate the effects of the Mn content on the colour properties of the pigments. It has been found that the optimum pigment composition (bluer colour with the lowest Mn content) is given by the formula YIn0.90Mn0.10O3. The technological performance of these YIn1−xMnxO3 blue pigments has also been evaluated by testing their efficiency for colouring ceramic glazes of different composition (boracic and plumbic) and properties, aiming to find a less toxic alternative for the Co-based pigments commonly used by the ceramic industry.  相似文献   

2.
Cobalt-doped willemite is a promising blue ceramic pigment, but some important aspects concerning crystal structure, optical properties and technological behaviour are still undisclosed. In order to get new insight on these features, willemite pigments (Zn2?xCoxSiO4, 0 < x < 0.3) were synthesized by the ceramic route and characterized from the structural (XRPD with Rietveld refinement), optical (DRS and colorimetry), microstructural (SEM, STEM, TEM, EDX, EELS) and technological (simulation of the ceramic process) viewpoints. The incorporation of cobalt in the willemite lattice, taking preferentially place in the Zn1 tetrahedral site, induces an increase of unit-cell parameters, metal–oxygen distances, and inter-tetrahedral tilting. It causes shifting and enhanced splitting of spin-allowed bands of Co2+ in tetrahedral coordination, implying slight changes of crystal field strength Dq and Racah B parameter, but increasing spin-orbit coupling parameter λ. Willemite pigments impart deep blue hue to ceramic glazes and glassy coatings with a colouring performance better than commercial Co-bearing colorants in the 800–1200 °C range. Detailed SEM-TEM investigation and microanalysis proved that no diffusion phenomena occur at the pigment–glassy coating interface and that willemite pigments are chemically inert during firing at 1050 °C.  相似文献   

3.
《Ceramics International》2023,49(7):10499-10505
We synthesized Sr1-xNdxFe12-yCoyO19 (x = 0–0.25, y = 0–0.1) using a conventional ceramic route. The crystal structures were analyzed using X-ray diffraction. With increasing Nd3+ and Co2+ contents, lattice constant a increases, while lattice constant c decreases. In terms of magnetic properties, the saturation magnetization and coercivity are simultaneously increased when x = y = 0.1 (equal co-substitution). This is mainly because the bivalent Co2+ has a smaller magnetic moment and unquenched orbital moments. When substitution amount x is further increased (unequal co-substitution), the magnetic properties are further improved and reach the optimum values of Ms = 76.4 emu/g and Hc = 5115 Oe owing to the occupation of the 2a site by divalent Fe2+. The occupancies of Co2+ and Fe2+ are further verified using Raman spectroscopy.  相似文献   

4.
《Ceramics International》2022,48(3):3473-3480
In this study, Fe2+:ZnSe transparent ceramics with different doping concentrations were prepared from annealed FeSe and ZnSe powders by hot pressing. The as-prepared ceramics consisted of a cubic ZnSe phase and compact microstructures. Doping concentrations of Fe2+ ions in the range 0.66–3.05 at.% were accurately realised, which could influence the absorption intensity of Fe2+:ZnSe transparent ceramics. An absorption peak was observed at ~3 μm, and its intensity could be controlled by the concentration of Fe2+ ions. FexZn1-xSe (0.0066 ≤ x ≤ 0.0305) ceramics with Fe2+ ions concentrations in the range 0.66–3.05 at.% exhibited significant absorption cross sections from 0.6676 × 10?19 to 0.1075 × 10?18 cm2. The specimen doped with 1.55 at.% Fe2+ ions displayed the highest transmittance of 67% at a wavelength of 14 μm and a carbonate absorption peak at 9 μm. The proposed transparent ceramic technique appears promising for preparing Fe2+:ZnSe laser gain media because of its advantage of allowing control over Fe2+ concentration.  相似文献   

5.
Solid solutions of Co and Mg diphosphates with compositions Co2?xMgxP2O7 (x = 0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5 and 1.8) have been prepared and characterized for the first time as alternative low-toxicity blue ceramic pigments. The compositions were prepared through the conventional coprecipitation route and calcined up to 1000 °C/2 h. Samples were characterized by thermal analysis, XRD, SEM/EDX, UV–vis-NIR spectroscopy and colour measurements (CIE-L*a*b*). Isostructural Co2?xMgxP2O7 diphosphate solid solutions (monoclinic system and P21/c spatial group) formed successfully within the studied range of compositions, accompanied only by a minor quantity of residual Co or Mg orthophosphates (M3(PO4)2). Interestingly, the obtained solid solutions developed nice blue-violet colourations even with high Mg doping after enamelling within double-firing (x = 1.5–1.8) and single-firing (x = 1.0–1.5) ceramic glasses. These optimal compositions containing a minimized Co amount (measured values around 7–16 wt%) could be therefore less toxic alternatives to the conventional Co3(PO4)2 blue ceramic pigment.  相似文献   

6.
《应用陶瓷进展》2013,112(1):3-9
Abstract

Black ceramic pigments are usually prepared from a mixture of transition metal oxides, including toxic and hazardous elements such as Ni, Co, Cr, and Mn. Spinel type black ceramic pigments based on Ni(Fe,Cr)2O4 prepared by a ceramic method have been optimised to reduce toxic and hazardous components. Ni (an A1 carcinogen as classified by ACGIH)has been partially substituted by inert elements such as Mg and Zn and the content of Cr (an A1 carcinogen in hexavalent form) has been minimised, to obtain a black ceramic pigment in which the important properties (colour and stability) are maintained. The black pigments obtained have been glazed and compared with commercial pigments. While maintaining adequate colouring properties, the concentration of toxic elements in the composition has been reduced.  相似文献   

7.
《Ceramics International》2015,41(8):9455-9460
The black ceramic pigments with spinel structure have been prepared by using Cr-rich leather sludge in this paper. The washed Cr-rich leather sludge calcined at 1100 °C for 1 h as chromium oxide precursor (named as CA) was mixed with an appropriate proportion of other industrial metallic oxides, followed synthesizing black ceramic pigment by sintering. Both non-washed and washed sludge fired at 1100 °C were characterized by X-ray fluorescence (XRF) in order to determine their chemical compositions and X-ray diffraction (XRD) analysis to confirm that CA mainly contains Cr2O3 crystal phase. The results show that CA could be used as a source of chromium to prepare black pigment. The crystalline phases of obtained pigments were characterized by XRD. Furthermore, the morphology as well as the composition of pigments was investigated by scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The color coordinates of pigments were examined and compared with the commercial pigments based on CIE-L* a* b* values measured using UV–vis spectroscopy. The obtained pigments sintered at 1200 °C with 35–55 wt% content of CA possess the excellent black spinel structure and color effect. Under optimized conditions, the pigment has low average spectral reflectance (7%).  相似文献   

8.
《Ceramics International》2022,48(10):13580-13588
In this work, Mg2+-doped CaBi2Nb2O9 (CBN-xMg) lead-free piezoceramics were prepared by a common solid-state method to investigate the effects of Mg2+ doping content on crystal structure, electrical resistivity, and dielectric and ferroelectric properties. XRD and Raman spectroscopy show that the Mg atoms enter the B-site to form a solid solution of the pure CBN phase. In addition, the XRD refinement results show that Mg2+ doping increases the distortion of the NbO6 octahedron and simultaneously enhances the total contribution of the spontaneous polarization of each position along the a-axis, and that the Ps increases from -28.678 μC/cm2 for x = 0 to -31.768 μC/cm2 for x = 0.02. However, when x > 0.02, the polarization decreases due to the oxygen vacancy pinning effect. According to SEM analysis, Mg2+ doping strengthened the growth rate of CBN ceramic grains on the a-b plane, resulting in a more obvious plate-like structure. The reduced anti-site defects of the CBN ceramic samples strengthened the structure of (Bi2O2)2+ and improved the resistivity of the samples. The internal dipole moment was also strengthened, resulting in a significant increase in the dielectric constant and a decrease in the dielectric loss. In general, Mg2+ doping significantly improved the comprehensive properties of CBN ceramics, with improved values including a d33 of 11.1 pC/N, Pr of 7.22 μC/cm2, tanδ (600 °C) of 3.0%, and ρdc (600 °C) of 108 Ω?cm.  相似文献   

9.
A yellow inorganic ceramic pigment with general formula Y1.86?xMxTb0.14O3?x/2 (M = Ca and/or Zn) with x = 0.06, 0.32 and 0.64 were synthesized by a modified Pechini method. XRD, SEM and HRTEM/EDX analysis showed the formation of solid solution at 1300 °C when x = 0.06 and 0.32. The best b* yellow coordinates were obtained for Ca and Zn co-doped Y1.86Tb0.14O3 samples. The intensity of the yellow colour in the samples is related to the presence of Tb4+ ions. Samples with higher concentration of Tb4+ ions lead to a better yellow colour. The chemical stability of these pigments was determinate in an industrial glaze. The glazing tests indicated that the powder samples with x = 0.06 and 0.32 fired at 1300 °C were stable in the glaze. These results make it a potential candidate for environmental friendly yellow ceramic pigment to be used in applications such as pigment for glazes or inkjet printers.  相似文献   

10.
Novel stablized green Ni0.15MgxAl2(0.85-x)Ti1.15+xO5 (0 ≤ x ≤ 0.25) pigments were prepared by solid-state method using Ni2O3 as colorant and Mg(CH3COO)2‧4H2O as auxiliary stabilizer. The synthesised pigments were characterized via XRD, XPS, SEM, TEM, UV-Vis, and automatic colorimeters. The results show that Mg-doping increases the oxygen vacancies, resulting in a positive shift of the binding energy of Ni2+ irons. The formation of Ni0.15MgxAl2(0.85-x)Ti1.15+xO5 solid solution greatly increases the energy transfer energy and shifts the emission to lower wavelengths (530 nm), corresponding to the visible diffuse reflection of green light. The chromaticity of the pigment changed little (L*=72.51, a*=−18.16, b*=20.94) at 1200 ℃ for 10 h, showing excellent thermal stability. The properties especially excellent thermal stability makes it promising novel green pigments in ceramic industry application.  相似文献   

11.
《Ceramics International》2022,48(16):23241-23248
In this work, a two-step solid-state reaction method is used to prepare the 0.55 Pb(Ni1/3Nb2/3)O3-0.135PbZrO3-0.315PbTiO3/xSnO2 (PNN-PZT/xSnO2) ceramics. The influences of SnO2 on the crystalline structure, electromechanical properties, and temperature stability of PNN-PZT ceramics were studied in detail. The results demonstrate that the Sn4+ ions are successfully introduced into the PNN-PZT crystalline lattice and substitute B-site Ni2+ and Zr4+. The x = 0.0025 ceramic with the coexistence of rhombohedral, tetragonal, and pseudocubic phases exhibits the optimized comprehensive properties: the quasi-static piezoelectric constant d33, large-signal d33*, electromechanical coupling coefficients kp and kt, free dielectric constant εr, and mechanical quality factor Qm are 1123 pC/N, 1250 p.m./V, 0.63, 0.54, 9529, and 57, respectively. Meanwhile, the Curie temperature for this composition is 103 °C, almost maintaining the same level as the PNN-PZT matrix. After annealing at 75 °C, the retained d33 of x = 0.0025 ceramic is as high as 975 pC/N, superior to the PNN-PZT matrix (retained d33 ≈ 873 pC/N). Our results provide a promising piezoelectric material for board bandwidth, high sensitivity, and miniaturized medical ultrasonic transducers applications.  相似文献   

12.
Aiming to get the NBT-based lead-free ceramic with high strain and low strain hysteresis for practical actuator applications, a solid solution of complex-ion (Fe1/2Nb1/2)4+doped 0.75Na1/2Bi1/2TiO3-0.25SrTiO3 ((Na1/2Bi1/2)0.75Sr0.25Ti1-x(Fe1/2Nb1/2)xO3, abbreviated as NBST-100xFN) was designed and prepared, and its phase structure, micromorphology, ferroelectric, strain, dielectric and piezoelectric performances were systematically investigated. It was found that the incorporation of (Fe1/2Nb1/2)4+ causes a structure transition from the ferroelectric/relaxor (FE/RE) mixed phases to relaxor (RE) phase, increasing to a promising strain performance at x = 0.04 featured by not only a moderate strain value of 0.26%, corresponding normalized strain d33* of 371 pm/V, but also a very small strain hysteresis of 22%. In addition, the NBST-4FN ceramic sample also exhibits an unexceptionable frequency-dependence of unipolar strain. This study provides a new understanding and design idea for the practical actuator application of high strain NBT-based lead-free ceramics with ultra-low hysteresis.  相似文献   

13.
The LiMg(1?x)ZnxPO4 ceramics have been prepared by the solid state ceramic route. The LiMg(1?x)ZnxPO4 ceramic retains the orthorhombic structure up to x = 0.2. The compositions with 0.3  x  0.8 exist as a mixture of orthorhombic and monoclinic phases. When Mg2+ is fully replaced with Zn2+ (x = 1.0) complete transition to monoclinic phase occurs. The ceramic with x = 0.1 (LiMg0.9Zn0.1PO4) sintered at 925 °C exhibits low relative permittivity (?r) of 6.7, high quality factor (Qu × f) of 99,700 GHz with a temperature coefficient of resonant frequency (τf) of ?62 ppm/°C. The slightly large τf is adjusted nearly to zero with the addition of TiO2. LiMg0.9Zn0.1PO4–TiO2 composite with 0.12 volume fraction TiO2 sintered at 950 °C shows good microwave dielectric properties: ?r = 10.1, Qu × f = 52,900 GHz and τf = ?5 ppm/°C. The ceramic is found to be chemically compatible with silver.  相似文献   

14.
《Ceramics International》2020,46(12):20472-20476
A series of nanocrystalline La1-xBixFeO3 (0.0≤x ≤ 0.5) ceramic powders were successfully prepared by the sol-gel method. X-ray diffraction and transmission electron microscopy were used to investigate the crystal structure evolution and hyperfine interactions of the samples. The average diameter of the powders was revealed to be approximately 80 nm. All the samples were crystallized into an orthorhombic crystal structure (space group Pnma) with no second phase. The magnetization of the Bi-doped samples obviously improved with increasing Bi content. A remarkable antiferromagnetic/ferromagnetic transition was detected at x ≥ 0.2, and a high coercive field of 23.05 kÖe was obtained with x = 0.5. The high correlation between the magnetization parameters and bonding characteristics indicated that significant stretching of the Fe3+-Od2- bonds and a decrease in Fe3+-Od2--Fe3+ linkage angles were the main origins of the strong ferromagnetism in the Bi-doped systems.  相似文献   

15.
《Ceramics International》2023,49(4):5676-5686
Mixed metal oxides with chemical formula FexAl2-xO3 (where x = 0.2–1.0) (FANF) was synthesized via sol-gel auto combustion process. X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy were employed to characterize produced oxide materials. The final product FANF was sintered for 5 h at 1100 °C. The TG-DTA validated the mixed metal oxides phase evolution and steady-state temperature. The replacement of aluminium ions results in orthorhombohedral structure in mixed metal oxides (MMO). The bandgap decreased from 3.72 eV to 3.21 eV and the crystallite size decreased from 28 nm to 14 nm as the iron content increased in the sample FexAl2-xO3 (where x = 0.2–1.0). The FT-IR confirmed no impurity peaks and the single phase with iron oxide band is near 432 cm?1, while the aluminium oxide band is 565–600 cm?1. Microstructural investigation shows flake-like growth, and EDS confirmed a stoichiometric ratio of MMO. Iron-substituted aluminate gas sensors detected CO, H2S, and NO2 at temperature ranging from 25 to 300 °C. Fe0.6Al1.4O4 (F3ANF) sensor responded 46.69% towards 100 ppm H2S at 200 °C. Overall, the results showed that a flake-like FANF sensor can be used effectively as a H2S gas sensor.  相似文献   

16.
A novel Li2Mg2-xNa2xMo3O12 (x = 0.09) ceramic with ultra-low sintering temperature is prepared by the solid-state reaction method. This ceramic (625 °C) exhibits excellent microwave dielectric properties (εr = 7.9, Q×f = 43844 GHz, τf = ?48.3 ppm/°C), terahertz transmission properties (εr1 = 7.4, tan σ1 = 0.0158, Tcoefficient = 0.598), and chemical compatibility with Ag. For the first time, two polarization selective devices are designed in the microwave and terahertz regions by using this ceramic substrate, respectively. The transmission amplitudes of the right- and left-handed circularly polarized waves of the microwave device at 9.7 GHz are 0.895 and 0.019, respectively. The transmission coefficients of the y- and x-polarized waves of the terahertz device at 0.45 THz are 0.598 and 0.075, respectively. Both functions are verified by the overall far-field radiation pattern. This work promotes the application of dielectric ceramics and ULTCC technology in the microwave and terahertz regions.  相似文献   

17.
《Ceramics International》2015,41(7):8849-8855
In this work, it has been established that on steel plates heated to 600 °C, an FexSiyCz layer forms during plasma chemical vapor deposition of SiCN ceramics. As a plasma-forming agent, hexamethyldisilazane was used in the deposition, from which a SiCN product was formed. The deposited ceramic film is heterogeneous and consists of regions where predominantly FeSi2 or FexSiyCz is present. The thickness of the film is~0.8 μm. An investigation of the degradation of the ceramic film in tap water and a 3% aqueous NaCl solution at 26 and 60 °C demonstrated that FeSi2 corrodes first, and then FexSiyCz corrodes. The process was also analyzed using electrochemical techniques.  相似文献   

18.
BaAl2-2xLi2xSi2O8-2x (x = 0, 0.005, 0.0075, 0.01, 0.02, 0.03) ceramics were synthesized by solid-state sintering method. Based on density functional theory, the first-principle calculations provided by the Cambridge Sequential Total Energy Package (CASTEP) software were introduced to the BaAl2Si2O8 (BAS) system. In an effort to confirm the site occupied by Li+, we discussed the formation energy and final energy of different positions of Li+ doped BAS. The result demonstrated that Li+ should substitute Al3+ to promote the hexacelsian-to-celsian transformation with the aid of generated oxygen vacancies. The sintering behavior, crystal structure, surface appearance, and microwave dielectric properties of samples were investigated. Completely transformed celsian could be obtained when x = 0.005–0.03, which lowered the sintering temperature from 1400 °C (x = 0) to 1300 °C (x = 0.03), as well as strikingly improved the compactness, quality factor (Q × f) value and temperature coefficient of resonant frequency (τf) of BAS ceramics. When x = 0.1, unveiling the significant effects of Al-position ion substitution, BaAl1.98Li0.02Si2O7.98 ceramic sintered at 1350 °C for 5 h exhibited a supreme Q × f value of 48,620 GHz, and the εr and τf values were 6.99 and -23.29 × 10?6 °C?1, respectively.  相似文献   

19.
《Ceramics International》2020,46(11):19103-19110
High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(ZryTi1-y)O3 (BNT-xPMnN-PZyT) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZyT ceramic, d33 (355 pC/N), kp (0.58), εr (1512), tanδ (0.40%), Tc (336 °C) and Qm (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZyT ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications.  相似文献   

20.
《Ceramics International》2020,46(7):8918-8927
This study details the impact of the co-substitution of Y3+-Ni3+ ions for the Fe3+ ions on the structural, morphological and, magnetic parameters of SrM based SrYxFe12-2xNixO19 (0.00 ≤ x ≥ 0.25) (SrYFeNiO) ceramic magnets synthesized by the ceramic route. Rietveld refinement of XRD confirmed the hexagonal (P63/mmc (194), z = 2) SrFe12O19 phase for all and an additional rhombohedral (R-3c (167), z = 6) hematite Fe2O3 phase for x = 0.2, x = 0.25 doping levels. The experimental and theoretical measurements abstracted the stretch of lattice parameters, i.e., the crystallographic axis and the lattice cell volume, and the dislocation of the crystallographic plane (1 1 4) for the hexagonal system, certified the heavy Y3+-Ni3+ ions substitution. To examine the morphological parameters, FESEM presented the regular hexagonal platelets of sizes ~ 1–2 μm, and EDX revealed the presence of constituent elements with their atomic and weight percentages in SrFeYNiO products. The extraction of vibrational frequencies of Fe–O bonds at tetrahedral and octahedral sites of iron through FT-IR spectroscopy authenticates the formation of the SrM phase. XPS correlated the doped elements, i.e., nickel in Ni+2 and Ni+3 and yttrium in Y+3, whereas parent element, i.e., iron in Fe+3 and Fe+2 chemical states, enlightened their impact on the magnetic parameters. Hysteresis loop analysis deduced a linear decline in magnetic parameters such as saturation magnetization (Ms) and remnant magnetization (Mr) due to non-magnetic Y3+ and less magnetic Ni3+ ions installment in 4f1 and 2b polyhedral sites of Fe3+ ions. However, high coercivity (Hc) up to 2.92 kOe ∈ x = 0.15 and extended magnetocrystalline anisotropy (MCA) up to 5.790× 106 Erg/g ∈ x = 0.15 of our obtained ceramic magnets affirmed their application in permanent magnetic industry. M(T) curves also demonstrated the decrease in Ms and displayed an SPM at TB, which is shifting towards lower temperatures with increasing Y3+-Ni3+ contents approved the expansion of lattice parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号