首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we systematically studied the effects of powder characteristics (B4C, TiC and Si powders) on the existential form of toughening phases (SiC and TiB2) as well as the overall microstructure and properties of B4C–TiB2–SiC composites fabricated by reactive hot pressing. The particle size of the TiC powder plays a largely determining role in the development of novel toughening phases, the TiB2–SiC composite structure, that are formed in the B4C matrix, while the Si particle size affects the agglomerate level of the SiC phase. The TiB2–SiC composite structure and SiC agglomerates enhance the fracture toughness, but decrease the flexural strength. Both the microstructure and mechanical properties of B4C–TiB2–SiC composites can be effectively tuned by regulating the combinations of the particle sizes of the starting powders. The B4C–TiB2–SiC composites demonstrate flexural strength, fracture toughness and Vickers hardness in the respective range of 567–632 MPa, 5.11–6.38 MPa m1/2, and 34.8–35.6 GPa.  相似文献   

2.
Boron carbide (B4C) ceramic composites with excellent mechanical properties were fabricated by hot-pressing using B4C, silicon carbide (SiC), titanium boride (TiB2), and magnesium aluminum silicate (MAS) as raw materials. The influences of SiC and TiB2 content on the microstructural evolution and mechanical properties of the composites were systematically investigated. The mechanism by which MAS promotes the sintering process of composites was also investigated. MAS exists in composites in the form of amorphous phase. It can effectively remove the oxide layer from the surface of ceramic particles during the high temperature sintering process. The typical values of relative density, hardness, bending strength, and fracture toughness of B4C–SiC–TiB2 composites are 99.6%, 32.61 GPa, 434 MPa, and 6.20 MPa m1/2, respectively. Based on the microstructure observations and finite element modeling, the operative toughening mechanism is mainly attributed to the crack deflection along the grain boundary, which results from the residual stress field generated by the thermal expansion mismatch between B4C and TiB2 phase.  相似文献   

3.
B4C–NdB6 composites were fabricated by in situ hot pressing at different temperatures (1950–2150°C) with B4C and Nd2O3 (2–4 wt%) as raw materials. The microstructure evolution of the composites with sintering temperature and Nd2O3 content was studied in detail, and the influence of pressure on the sintering of B4C with different contents of Nd2O3 was also investigated. The performance of the fabricated composites was researched and the toughening mechanism was discussed. The results indicate that Nd2O3 can react with B4C to form the thin-sheet intermediate products (Nd(BO2)3, Nd2CO5) first, which then transform to band-shaped NdB6. Pressure can reduce the distance of B4C and Nd2O3, accelerating the mass transfer and contributing to the formation of NdB6. NdB6 and intermediate products are first in agglomerate structure at 1950°C, and then the agglomerates are broken to form dispersive micron and submicron NdB6 at 2000°C by the synergistic function of pressure, diffusion at high temperature, and liquid phase sintering. NdB6 can enhance the densification owing to the bonding function. Excessive Nd2O3 content leads to residual pores, and excessive temperature (2150°C) results in the coarsening of phases. The coexistence of transgranular and intergranular fracture of NdB6 promote the fracture toughness.  相似文献   

4.
《Ceramics International》2022,48(13):18811-18820
Boron carbide (B4C) matrix composites had the advantages of high hardness, high melting point and low density. However, due to the low relative density and poor fracture toughness of B4C, its comprehensive properties were limited in engineering applications. In this work, in order to improve the comprehensive properties of B4C composites, B4C–SiC–SiB6–CeB6 composites were designed and fabricated via reactive hot pressing at 2050 °C and 20 MPa with B4C matrix and novel additives (Double doping of Si and CeO2) as raw materials. The effects of additive CeO2 content on the microstructures and mechanical properties of composite were investigated, and reaction mechanisms of B4C, Si and CeO2 at different temperatures were studied in detail. The work showed that liquid phase Si and SiB6 greatly improved the densification of composites. CeB6 played an indispensable role in the formation of SiC–SiB6 agglomerate structure, increasing strength and supplementing toughness. When the content of CeO2 was 6 wt%, the relative density, hardness, flexural strength and fracture toughness reached to 99.7%, 34.9 GPa, 461.46 MPa and 5.57 MPa m1/2, respectively. Our strategy benefited from the formation of two liquid phases and SiC–SiB6 agglomerate structure, showing great potential in promoting sintering and improving fracture toughness.  相似文献   

5.
TiB2–B4C composites were in situ synthesized and consolidated by high pressure synthesis method from a mixture of TiC and B powders at the pressure and temperature of 5.0 GPa and 1500℃-1900℃. The phase composition, microstructure, density, hardness, thermal conductivity, and electrical resistivity of TiB2–B4C composites were analyzed. As the increase in the synthesis temperature, the products were TiB2 and B4C phases and that crystallinity improved. TiB2–B4C composites were dense without obvious pores. TiB2–B4C composites synthesized at 1800℃ obtained the optimized performance, including the relative density of 98.2%, the Vickers hardness of 31.7 ± 1.2 GPa with the load of 9.8 N, the thermal conductivity of 30.3 ± 0.7 W/(m K), and the electrical resistivity of 3.3 × 10−3 Ω cm, respectively. The grain size of the TiB2–B4C composites changed with the increase in synthesis temperature, leading to the changes in hardness, thermal conductivity, and electrical resistivity.  相似文献   

6.
《Ceramics International》2023,49(3):4403-4411
B4C-20 wt% TiB2 ceramics were fabricated by hot pressing B4C and ball-milled TiB2 powder mixtures. The effects of the TiB2 particle size on the microstructure and mechanical properties were investigated. The results showed that the TiB2 particle size played an important role in the mechanical properties of the B4C–TiB2 ceramics. In addition, SiO2 introduced by ball milling was beneficial for densification but detrimental to the mechanical properties of the B4C–TiB2 ceramics. The typical values of relative density, hardness, flexural strength, and fracture toughness of the ceramics were 99.20%, 35.22 GPa, 765 MPa, and 7.69 MPa m1/2, respectively. The toughening mechanisms of the B4C–TiB2 ceramics were explained by crack deflection and crack branching. In this study, the effects of high pressure and temperature caused liquefying SiO2 to migrate to the surface of B4C–TiB2 and react with diffused carbon source in the graphite foil to form a 30 μm thick SiC layered structure, which improved the high-temperature oxidation resistance of the material. The unique SiC layered structure overcame the insufficient oxidation resistance of B4C and TiB2, thereby improving the oxidation resistance of the ceramics under high-temperature service conditions.  相似文献   

7.
《Ceramics International》2021,47(18):25895-25900
In this study, TiB2–B4C composite ceramics were prepared using Y2O3 and Al2O3 as the sintering aids. Different contents of B4C were added to seek promoted comprehensive mechanical properties of the composites. The mixed powders were sintered at 1850 °C under a uniaxial loading of 30 MPa for 2 h via hot-pressing. Through the measurement of XRD, SEM and related mechanical properties, the influence of B4C content on the microstructure and mechanical properties of TiB2–B4C composites ceramics was discussed. The experimental results show that TiB2–B4C composite ceramics exhibit excellent mechanical properties, which can be attributed to the dense microstructure and fine grain size. In addition, TiB2–B4C composite ceramic shows a relatively high comprehensive properties when the addition amount of B4C is 20 wt%. The relative density, Vickers hardness, fracture toughness and flexural strength are measured to be 99.61%, 27.63 ± 1.73 GPa, 4.77 ± 0.06 MPa m1/2, 612.5 ± 28.78 MPa, respectively.  相似文献   

8.
9.
Samples of B4C–TiB2 eutectic are laser processed to produce composites with varying microstructural scales. The eutectic materials exhibit both load dependent and load independent hardness regimes with a transition occurring between 4 and 5 N indentation load. The load-independent hardness of eutectics with a microstructural scale smaller than 1 μm is about 31 GPa, and the indentation fracture toughness (5–10 N indenter load) of the eutectics is 2.47–4.76 MPa m1/2. Indentation-induced cracks are deflected by TiB2 lamellae, and indentation-induced spallation is reduced in the B4C–TiB2 eutectic compared to monolithic B4C. Indentation-induced amorphization in monolithic B4C and the B4C phase of the eutectic is detected using Raman spectroscopy. Sub-surface damage is observed using TEM, including microcracking and amorphization damage in B4C and B4C–TiB2 eutectics. Dislocations are observed in the TiB2 phase of eutectics with an interlamellar spacing of 1.9 μm.  相似文献   

10.
Mesocarbon microbead–SiC (MCMB–SiC) composites with 30 wt% MCMBs were densified using a two-step hot pressing method. Based on the pyrolysis of the initial MCMB powders, the effects of the pressing schedule on densification were investigated and the optimal first-step pressing temperature was determined. To reveal the influence of temperature on their microstructures, the raw MCMB powders were heat-treated at different temperatures in the range 400–1400 °C. The morphologies and degrees of carbonisation at different temperatures were additionally studied. The results showed that densification was mainly affected by the micro-gaps in the lamellar structure formed during the pyrolysis of the MCMBs. When the samples were first hot-pressed at a lower temperature and then at a higher temperature, the densification pressure required was effectively decreased. Furthermore, when the samples were first pressed at an appropriate temperature, the relative density of the composites was improved to a rather high value of 98.6%. The two-step hot pressing method was effective in fabricating dense C–SiC composites with high C content.  相似文献   

11.
《Ceramics International》2020,46(13):20885-20895
The spark plasma sintering process was implemented to produce four different composites, namely Ti-10 wt% Mo-(0.5, 1, 2, and 4) wt% (TiB2 + TiC). All samples were sintered at 1300 °C for 5 min under 50 MPa. A full study was carried out on the mechanical properties and the relative density of these SPSed composite samples. The best relative density of around 98.7% was related to the sample with 1 wt% (TiB2 + TiC). The role of relative density was so predominant that the best values for all mechanical properties, i.e., bending strength, hardness, elongation, and ultimate tensile strength (UTS), were achieved for those with the highest relative density values. The formation of the in-situ TiB phase was proved by the XRD analysis. Besides, microscopical investigations (optical and SEM) showed that adding more ceramic additives led to an increased amount of porosity while Mo solubility decreased in the titanium matrix. Finally, different fracture modes on the surfaces of composite samples were studied using SEM images.  相似文献   

12.
《Ceramics International》2020,46(6):7403-7412
The impact of various volume percentages of TiB2 additive (0, 10, 20, and 30) on the microstructure, relative density (RD), Vickers hardness, flexural strength, and thermal conductivity of as-sintered TiC-10 vol% SiCw-based composite samples were scrutinized. All four samples were sintered using the SPS method under the following circumstances; sintering temperature of 1900 °C, dwell time of 7 min, and external pressure of 40 MPa. The best relative density of 98.73% was achieved for the sample with no TiB2 additive, indicating the negative effect of TiB2 additive on the RD and formation of porosity. The microstructural observations and XRD results confirmed the chemical interaction of TiO2 and B2O3 oxide layers and SiCw and in-situ formation of the TiSi brittle phase and TiC. The most significant values of flexural strength (511 MPa) and hardness (27.67 GPa) were related to TiC-10 vol% SiCw and TiC-10 vol% SiCw-30 vol% TiB2 samples, respectively. On the contrary, the specimens with 30 vol% and 10 vol% TiB2 as additive presented the poorest qualities of flexural strength (234 MPa) and Vickers hardness (22.12 GPa). Finally, the influence of the TiB2 content on the thermal conductivity was evaluated, indicating the positive impact of this secondary phase on this characteristic, so with adding 30 vol% TiB2 to TiC-10 vol% SiCw, a thermal conductivity of 30.7 W/m.K was obtained.  相似文献   

13.
《Ceramics International》2019,45(14):16740-16747
Reactive hot pressing of TiC–B4C precursors was undertaken at 1800 °C to produce TiB2 with carbon inclusions. Atomic mechanisms of titanium diboride nucleation, as well as sponge-like carbon inclusions and submicron platelets of graphite precipitation have been investigated. Precursor grain size, green body composition and synthesis time were varied to analyze phase transformation. The carbon left after B4C high temperature decomposition is shown remaining as graphite sponge-like inclusions. Ab-initio calculations confirm that the boron atoms accumulation on (111) TiC plains leads to tensile stress. The developed stress cleaves TiC grains and enhances further reaction. Most of carbon expelled from TiC during its transformation into TiB2 forms graphite submicron platelets.  相似文献   

14.
The phase composition, microstructure, and mechanical properties of the WB2–B4C composites fabricated by a combination of boro/carbothermal reduction and spark plasma sintering (SPS) method with WO3, B4C, and graphite as raw materials were investigated in this study. The experimental results showed that the relative density of the as-sintered WB2–B4C composites was ∼93.1% and ∼99.5%, respectively, after being SPS sintered at 1600°C under the applied load of 30 MPa for 10 min. Scanning electron microscope analysis showed that a network structure with WB2 grains surrounded by B4C grains was observed after sintering. Analyses of high-resolution TEM showed semi-coherent interface and lattice distortion transition region between WB2 and B4C grains. The Vickers hardness of WB2–B4C composite increased to 22.3 ± 0.9 GPa at 9.8 N owing to the fully dense, solid solution of C, and three-dimensional network structure. Moreover, the fracture toughness and flexural strength of WB2–B4C composite reach 6.04 ± 0.81 MPa m1/2 and 750 ± 80 MPa, respectively, which could be attributed to the semi-coherent interface between WB2 and B4C grains.  相似文献   

15.
《Ceramics International》2020,46(8):11726-11734
Four hybrid titanium-based samples with different amounts of B4C as reinforcement and the same numbers of specimens with TiB2 + TiC additives were produced using the SPS method at 1200 °C. For a reliable comparison, stoichiometry relations of starting powders were applied to estimate the precise contents of mentioned reinforcements to reach the same vol% of final TiB and TiC phases. The microstructure, relative density (RD), and mechanical properties of both series of SPSed composite samples were studied to make a reliable comparison. The best value of the RD (99.9%) was achieved for the sample doped with 0.48 wt% B4C. The in-situ TiBw phase formation in both series of samples was confirmed using XRD and microscopical evaluations. Samples doped with B4C exhibited better UTS, tensile elongation, and bending strength than the ones doped with TiB2 + TiC. The sample with the least B4C content presented the best value of mentioned mechanical properties.  相似文献   

16.
B4C–CrB2 composites were prepared by arc-melting using B4C and CrB2 powders as raw materials. The eutectic composition of B4C–CrB2 system was 30B4C–70CrB2 (mol%) with a labyrinth-like irregularly layered eutectic microstructure, composed of B4C phase about 1–2 μm in thickness dispersing in CrB2 matrix, much smaller than raw powders. The interface of the eutectic composite was well bonded, and there were edge dislocations at the interface to alleviate the interface mismatch. The eutectic temperature of B4C–CrB2 composites was approximately 2200 K. At the eutectic composition, the B4C–CrB2 composites showed the maximum Vickers hardness (24.6 GPa) and fracture toughness (4.3 MPa m1/2) at room temperature.  相似文献   

17.
《Ceramics International》2022,48(4):5119-5129
The spark plasma sintering (SPS) technique was found to effectively improve the mechanical properties of TiB2–SiC ceramic by forming a unique interlocking structure. This study investigated the phase transition process of the hexagonal micro-platelets TiB2 powders with self-assembled structure during the molten-salt-mediated carbothermal reduction and its effect on promoting the mechanical properties of TiB2-based ceramics. It was found that the SPS approach ensured a highly densified TiB2–SiC ceramics with enhanced Vickers hardness of 21.0 ± 1.3 GPa and fracture resistance of 7.8 ± 0.3 MPa m1/2. The performance enhancement of the resultant TiB2–SiC composite was attributed to the interlocking structure from the original anisotropic TiB2 powders, which could effectively absorb the energy and facilitate the crack deflection.  相似文献   

18.
Almost fully-dense B4C–SiC–TiB2 composites with a high combination of strength and toughness were prepared through in situ reactive spark plasma sintering using B4C and TiSi2 as raw materials. The densification, microstructure, mechanical properties, reaction, and toughening mechanisms were explored. TiSi2 was confirmed as a reactive sintering additive to promote densification via transient liquid-phase sintering. Specifically, Si formed via the reaction between B4C and TiSi2 that served as a transient component contributed to densification when it melted and then reacted with C to yield more SiC. Toughening mechanisms, including crack deflection, branching and bridging, could be observed due to the residual stresses induced by the thermoelastic mismatches. Particularly, the introduced SiC–TiB2 agglomerates composed of interlocked SiC and TiB2 played a critical role in improving toughness. Accordingly, the B4C–SiC–TiB2 composite created with B4C-16 wt% TiSi2 achieved excellent mechanical performance, containing a Vickers hardness of 33.5 GPa, a flexural strength of 608.7 MPa and a fracture toughness of 6.43 MPa m1/2.  相似文献   

19.
B4C–TiB2 ceramic composites were fabricated by a two-step method. First, B4C–TiB2 composite powders were synthesized from TiC–B powder mixtures at 1400 ℃, then mixed with commercial B4C powders by ball milling and the B4C–TiB2 ceramic composites were prepared by hot pressing at 1950 ℃. This two-step method not only effectively refined TiB2 grains, but also allowed the composition of the composites to be freely designed. The microstructure and mechanical properties of the composites were investigated. The results showed that the B4C–TiB2 ceramic composite with a 10 wt% TiB2 content obtained the ideal comprehensive performance, with a volume density, Vickers hardness, bending strength, and fracture toughness of 2.61 g/cm3, 35.3 GPa, 708 MPa, and 5.82 MPa m1/2, respectively. The advantages of the in-situ reaction process were fully exerted by the two-step method, which made a remarkable contribution to the excellent properties of B4C–TiB2 ceramic composites.  相似文献   

20.
The seven-layer B4C/TiB2-based graded composites was prepared with B4C and Ti–Al intermetallics through stepped laminating processing and transient liquid phase spark plasma sintering. The sintering strategy of the graded composites was proposed based on the sintering products of monolayer materials with different contents of Ti–Al intermetallics from 5 wt% to 60 wt%. The top three layers and bottom three layers were sintered respectively at 1650 °C and 1500 °C, and then the middle layer was used as the binder to joint the as-preserved two sections at 1550 °C. The apparent density of the as-prepared B4C/TiB2-based multilayer graded composites was 2.94 g/cm3, which was lower than that of most advanced ceramics. With the increase in the addition of Ti–Al intermetallics, the hardness of B4C/TiB2-based multilayer graded composites decreased from 31 GPa (B4C-riched) to 25 GPa (TiB2-riched), whereas the fracture toughness increased from 3.8 MPa·m0.5–6.02 MPa·m0.5. The compressive strength was up to 1100 MPa, displaying the jagged stress-strain curve. Crack propagation resistance mechanisms such as deflection and bridging enhanced the fracture toughness. The B4C/TiB2-based multilayer graded composites fabricated at low temperature possess high front hardness, high rear toughness, high overall strength and low density, and has promising applications in impact-resistant fields such as lightweight ceramic armor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号