首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(17):24609-24618
The aim of this study was to synthesize CuFe2O4 together with g-C3N4 and GNPs in various combinations on the surface of Ni foam for use as anode materials in supercapacitors. The fabricated electrodes were investigated by XRD, FTIR, XPS, BET, SEM and TEM for content and by CV, GCD and EIS analysis for electrochemistry. The characterization results showed that CuFe2O4 was successfully synthesized together with g-C3N4 and GNPs in a nanosponge-like geometry. The highest value of specific capacitance was found to be 989 mF/cm2 at 2 mA measurement in the triple combination. Moreover, the stability of this electrode was measured to be 70% after 1500 cycles at 16 mA, while the energy and power densities were calculated to be 27.8 mWh/cm2 and 300 mW/cm2, respectively. The EIS results show that the carbon-based component increased the Cs value by decreasing the charge transfer and diffusion resistances of the electrodes. Compared to its counterparts in the literature, its Cs value is quite high, but its stability is low, so it can be used in low-cycle applications.  相似文献   

2.
《Ceramics International》2016,42(10):11851-11857
Low-cost dynamic materials for Faradaic redox reactions are needed for high-energy storage supercapacitors. A simple and cost-effective hydrothermal process was employed to synthesize amaryllis-like NiCo2S4 nanoflowers. The sample was characterized by X-ray powder diffraction, Brunauer–Emmett–Teller method, scanning electron microscopy, and transmission electron microscopy. NiCo2S4 nanoflowers were coated onto carbon fiber fabric and used as a binder-free electrode to fabricate a solid-state supercapacitor compact device. The solid-state supercapacitor exhibited excellent electrochemical performance, including high specific capacitance of 360 F g−1 at scan rate of 5 mV s−1 and high energy density of 25 W h kg−1 at power density of 168 W kg−1. In addition, the supercapacitor possessed high flexibility and good stability by retaining 90% capacitance after 5000 cycles. The high conductivity and Faradic-redox activity of NiCo2S4 nanoflowers resulted in high specific energy and power. Thus, NiCo2S4 nanoflowers are promising pseudocapacitive materials for low-cost and lightweight solid-state supercapacitors.  相似文献   

3.
《Ceramics International》2019,45(14):17192-17203
In this research, we have effectively synthesized a novel NiCo2O4/NiCo2S4 powder by co-precipitation and thin films prepared using a screen-printing method on Ni mesh for supercapacitor applications. Herein, we report the effect of unique hierarchical nanostructures and the systematic effect of Ni and Co on the structural, morphological and electrical properties of the NiCo2O4/NiCo2S4 electrodes. The optimized NiCo2O4/NiCo2S4 electrode shows outstanding performance with a specific capacitance of 1966 F g−1 at 5 mV s−1. The cycling stability reports indicate the NiCo2O4/NiCo2S4 electrodes have an outstanding cyclic stability with 91% capacity retention. From the supercapacitor performance results, we confirmed that the NiCo2O4/NiCo2S4 electrode is useful for the fabrication of symmetric supercapacitors. These results reveal that the NiCo2O4/NiCo2S4 electrodes is a capable electrode material for supercapacitor applications in the future.  相似文献   

4.
《Ceramics International》2022,48(18):26312-26325
We report the fabrication of nanocystalline MnO2 thin film-based electrode on a predeposited indium tin oxide (ITO) film on the glass substrate, using a binderless and simple two-electrode electrofabrication approach. Effects of Co and Cu incorporation on microstructural and electrochemical performance of the electrode were optimally and extensively investigated. The experimental results for the optimum fabrication conditions for Co@MnO2 and Cu@MnO2 and pure MnO2 thin film-based electrode samples showed uniqueness in microstructural features, degrees of crystallinity and roughness, and high electrochemical energy storage performance. Co@MnO2 film electrode exhibited remarkable specific capacitance (1068 Fg-1) and areal capacity (25.78 mAh cm?2) as against other electrode films (Cu@MnO2 and pure MnO2) which exhibited specific capacitances 837 and 438 F g?1 and areal capacities 10.6 and 4.9 mAh cm?2, respectively. Exceptional stabilities were also recorded for the composite samples (87.2% and 84.4% for Cu@MnO2 and Co@MnO2 thin film electrodes, respectively) against the pure MnO2 film electrode sample (77.8%), after 2000 cycles. In addition, the short time constants (1.27 s and 1.31 s) were respectively realized for the fabricated Co@MnO2 and Cu@MnO2 electrode films as against the pure MnO2 electrodes (4.35 s). These features observed in the composite electrode samples demonstrated an exhibition of faster ion response and higher rate capability by the samples. Moreover, the incorporation of Co into the MnO2 electrode material relatively improved the supercapacitive activeness by enhancing the charge transition and transport.  相似文献   

5.
《Ceramics International》2023,49(4):6280-6288
Bundled V2O5 nanobelts decorated with Fe3O4 nanoparticles (F3V nanostructures) were successfully synthesized to develop a low-cost electrode material for energy storage applications. The synthesized samples were subjected to structural, morphological and electrochemical studies. The Fe3O4 nanoparticles decorated over bundled V2O5 nanobelts exhibited better electrochemical properties than the pristine Fe3O4 nanoparticles and V2O5 nanobelts. The electrochemical behavior of the fabricated electrodes was investigated in an electrolyte of 3 M KOH, demonstrated an exceptional specific capacity values of 750.1, 660.3, and 1519 F g–1 for V2O5, Fe3O4, and F3V respectively at a current density of 15 A g–1. The assembled F3V symmetric supercapacitor (SSC) device exhibited an excellent specific capacitance of 93 F g–1 at a current density of 0.5 A g–1, delivering energy and power densities of 13 Wh.kg–1 and 1530 W kg–1, respectively, and superior long-term cycling stability of ~84% capacity retention over 5000 galvanostatic charge–discharge cycles. These findings demonstrate the extraordinary electrochemical characteristics of the F3V nanostructures, indicating their potential use in energy storage applications.  相似文献   

6.
《Ceramics International》2022,48(17):24745-24750
Due to their combination of enhanced electrical conductivity and high-performance electron and ion transport channels, binary metal oxides with well-morphological optimized electrode materials have been attracted the greatest research attention for high-performance supercapacitor applications. An easy co-precipitation method is used to synthesize ZnCo2O4 nanoparticles using NaOH and Urea as precipitation agents. To facilitate electrical conductivity, suitable carbon material such as carbon nanotube (CNT) has been added to make a composite material. The three-electrode system was preferred for estimating specific capacitance of prepared material and optimally efficient ZnCo2O4/CNT electrode delivered a moderate 888 F/g capacitance at 1 A/g in 3 M KOH and after 5000 charge discharge cycles 94.72% of cycling stability retained at 5 A/g. This paper presents a little price and simple procedure for preparation of ZnCo2O4/CNT electrode that promotes creative sprit for energy storage applications.  相似文献   

7.
《Ceramics International》2016,42(13):14976-14983
The design of electrode materials with desirable morphology is of great importance and challenge to fabricate high-performance supercapacitors. In this work, NiCo2O4 nanopetal, nanosheet, nanoneedle and nanorod arrays on nickel foam have been synthesized through a facile hydrothermal method. The morphologies of NiCo2O4 arrays can be easily controlled by adjusting the kinds of alkali source and the addition of NH4F. The electrochemical results show that the NiCo2O4 nanoneedles electrode has the optimal electrochemical performance among four samples, demonstrating its promising application potential for high performance supercapacitors. This investigation about morphology control of NiCo2O4 electrode materials and the relationship between the morphologies and corresponding electrochemical performances provides strategies to enhance the performance of supercapacitor electrodes.  相似文献   

8.
In the present article, graphene oxide (GO) sheets and monoclinic copper oxide (CuO) nanocrystals are connected with each other and result in the formation of CuO/rGO nanopellets, and these nanopellets synthesized using coprecipitation method. The nanopellet structured CuO/rGO composite on carbon cloth, which act as current collector exhibits specific capacitance of 188 F g?1 at a current density of 0.2 A g?1 and up to 96.3% capacity retention after 2000 charge-discharge cycles. It shows a maximum energy density of 7.32 Wh kg?1 and power density of 53 W kg?1. The glucose sensing characteristics of CuO/rGO nanopellet is investigated on carbon cloth and ITO substrate. It shows glucose sensitivity of 0.805 mA mM?1 cm?2 and 0.2982 mA mM?1 cm?2 for a bundle like structured CuO/rGO composite on carbon cloth and ITO substrate, respectively. Further H2O2 sensing is studied on ITO substrate, which manifests H2O2 sensitivity of 84.39 μA mM?1 cm?2. The results indicate that nanopellet structured CuO/rGO composite could be a promising electrode material for supercapacitor, glucose, and H2O2 sensor.  相似文献   

9.
《Ceramics International》2022,48(8):10533-10538
A supercapacitor electrode material was synthesized by using hollow carbon spheres prepared via high temperature sintering of dopamine hydrochloride and subsequent coating with MnO2. SEM, TEM and analysis of energy pattern were used to characterize the structure, morphology and elemental composition of the material, which proved that the material had a good hollow structure and uniform surface morphology, and that MnO2 was successfully coated on the surface of the carbon material. Electrochemical characterization using charge-discharge cycles at constant current and other methods show that the prepared materials have good specific capacitance and cycle stability, and have a specific capacitance of 198 F.g?1 at a current of 1 A·g?1. When the charge and discharge cycle is carried out at 10 A·g?1 for 5000 cycles, the capacitance remains stable at more than 180 F·g?1.  相似文献   

10.
《Ceramics International》2021,47(23):32727-32735
NiCo2O4 is a promising electrode material for supercapacitors and it has been widely investigated. However, its low conductivity restricts the reaction kinetics. Combining it with carbon materials can efficiently overcome the issue. But, very limited research about the homogenous coatings of NiCo2O4 nanocrystals on carbon nanotubes (CNTs) is reported. In this work, thin nanosheets and small nanoparticles of NiCo2O4 densely coated on CNTs are synthesized by tuning the annealing time with a hybrid of metal hydroxide@CNTs as a precursor. In the precursor, core−shell structures are formed by conformally coating 2D metal hydroxides on CNTs. After annealing it at 300 °C for different time, NiCo2O4 nanosheets or nanoparticles are then obtained and the core−shell structure is remained. Due to the reduced crystal size of NiCo2O4 and the high conductivity of CNTs, the composites have large specific capacitances, excellent rate performances, and good stability. The composite of NiCo2O4 nanoparticles on CNTs has a higher specific capacitance, about 1786 F g−1 at 0.5 A g−1, than the hybrid of NiCo2O4 nanosheets on CNTs due to their different morphologies. Using the composite as positive electrode and activated carbon as negative electrode, a hybrid capacitor cell can work in a voltage of 1.6 V, delivering an energy density of 32.5 Wh kg−1 at 800 W kg−1, showing a large potential for supercapacitors.  相似文献   

11.
采用螯合法制备了RGO/δ-MnO2复合材料,并用X射线粉末衍射(XRD)、低压氮气吸附脱附(BET)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)、热重(TGA)对其结构和物相进行表征。采用循环伏安测试(CV)、恒电流充放电(GCD)以及循环测试对所制材料电化学储能进行测试。结果表明RGO/δ-MnO2复合材料比纯石墨烯和纯δ-MnO2具有更优异的电化学性能。当电流密度为1 A·g-1时,RGO/δ-MnO2复合材料的比电容可达322.6 F·g-1,比纯δ-MnO2电极材料高234.2 F·g-1,比纯石墨烯高212.1 F·g-1。当电流密度放大10倍后,RGO/δ-MnO2复合材料的比电容保留率为79.1%。在1000次恒流充放电测试后,比电容为252 F·g-1(99.6%),说明该方法制备的RGO/δ-MnO2复合材料是一种有应用前景的超级电容器电极材料。  相似文献   

12.
《Ceramics International》2017,43(12):8585-8589
In the work, we explored an efficient synthetic platform to purposefully fabricate different morphologies of NiCo2O4 by controlling the hydrothermal temperature. All the obtained samples were characterized by means of X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy. With the increase of hydrothermal temperature, the morphology of obtained samples transformed from spongy nanosphere to ellipse-like, then to peanut-like structure and an effective blue shifting of Raman spectroscopy occurred. The magnetic measurements indicated that the materials transform from paramagnetic to weak ferromagnetic with the increase of hydrothermal temperature.  相似文献   

13.
Here, we investigate the effect of temperature on solution combustion synthesized MnFe2O4 nanoparticles (NPs) as supercapacitor electrode material that would affect the structural, optical, electrochemical, magnetic and sensing properties. The variation in temperature influences the structure and morphology of synthesized NPs which in turn produces defect states in NPs. Powder X-ray diffraction studies confirms the presence of cubic spinel structure with increase in crystallinity and crystallite size with increase in temperature. Scanning electron microscopy analysis indicates the morphology change in NPs from spherical to network like interlinking to the formation of polyhedron structure at higher temperature. Photoluminescence, energy dispersive X-ray analysis, X-ray photoelectron scpectroscopy and UV-visible diffused reflectance spectroscopy studies emphasize the increase in surface oxygen vacancies concentration with narrowing of band gap from 2.9 to 2.5 eV. Electrochemical studies designate the excellent performance and desirable cyclic stability of synthesized NPs. In particular, the specific capacitance of synthesized NP increases with increase in temperature, reaching highest specific capacitance from CV was 297.7 F/g for 0.1 M HCl and 158.85 F/g for 0.1 M NaNO3 electrolytes for NP synthesized at 500 °C. The synthesized NPs show excellent stability with high capacity retention in both the electrolytes. The graphite modified electrode can also sense Paracetamol and d-Glucose at a very low concentration of 1–5 mM. Meanwhile, it acts as a very good photocatalyst to decolourize Methylene Blue and Alizarin Red S dye under Sunlight illumination due to the increase in concentration of surface oxygen vacancies with narrow band gap. Finally, the synthesized MnFe2O4 NP can be used as a potential supercapacitor electrode with excellent stability and recyclability, to sense the analyte even at very low concentration and also act as a photocatalyst with high recyclability with the help of magnetic nature towards environmental cleaning.  相似文献   

14.
《Ceramics International》2017,43(3):3218-3223
In this work, the nanosized porous MnCo2O4 microspheres were synthesized by a hydrothermal method and their electrochemical behaviors were investigated based on a carbon supported composite air electrode for rechargeable sodium-air batteries. Under dry air test condition, the MnCo2O4/C air electrode demonstrated a stable working voltage of around 2.1 V vs. Na+/Na and a high initial discharge capacity of 7709.4 mA h g−1, based on the active material mass, at a current density of 0.1 mA cm−2. By a limit on the depth of discharge, the cell exhibited a specific capacity of 1000 mA h g−1 with a high cycling stability up to 130 cycles. The considerable electrocatalytic activity suggests that the as-proposed MnCo2O4 is a highly efficient catalyst as air electrode for rechargeable sodium-air batteries.  相似文献   

15.
Research and development (R&D) of electrochemical capacitors is discussed in terms of material characteristics and device performance and testing. Various chemistries and technologies being developed are identified and the status of and problems associated with each of the technologies are discussed. The technologies considered include those using various types of carbon and pseudo-capacitive materials such as metal oxides. What is needed to make the various electrochemical capacitor technologies cost competitive with batteries for different applications and markets is also considered.Electrochemical capacitors (especially double-layer capacitors) are intrinsically high power devices of limited energy storage capability and long cycle life; batteries are basically energy storage devices, which can be designed and used as relatively high power devices with a sacrifice in useable energy storage capacity. Both electrochemical capacitors and high power batteries are designed with thin electrodes, materials having nano-scale characteristics, and a minimum resistance. Much of the research on electrochemical capacitors is concerned with increasing their energy density with the minimum sacrifice in power capability and cycle life for deep discharges. Of special interest has been the development of advanced carbons with specific capacitance (F/g) significantly greater than the present values of 150-200 F/g in aqueous electrolytes and 80-120 F/g in organic electrolytes. Cost continues to be a major obstacle to the development of large markets for electrochemical capacitors particularly for vehicle applications. The development of lower cost carbons appropriate for use in electrochemical capacitors is underway by several speciality carbon suppliers. The goal is to reduce the cost of the carbon to $10-15/kg.  相似文献   

16.
《Ceramics International》2023,49(3):4422-4434
A hybrid ZnCo2O4@CoMoO4 heterogeneous structure deposited onto nickel foam was synthesized via a two-step hydrothermal process. The results demonstrate that the hybrid architecture exhibits excellent electrochemical performance, including the specific capacitance of 1040C g?1 at 1 A g?1 for hybrid structures, high energy density of 87.3 Wh kg?1 at a power density of 2700 W kg?1 for an as-assembled supercapacitor and excellent cycle stability with a capacity retention of 99% undergoing 8000 charge-discharge for the device. Moreover, it also shows favorable electrocatalytic activity with low overpotentials of 237 mV at 20 mA cm?2 for oxygen evolution reaction and 114 mV at 10 mA cm?2 for hydrogen evolution reaction, and low cell voltage of 1.54 V at 10 mA cm?2 for overall water splitting. In addition, the stability maintains well for the long-term use of 13 h. We believe that this hybrid ZnCo2O4@CoMoO4 heterogeneous structure could be a promising candidate for future energy storage and conversion.  相似文献   

17.
In this work, we employed a simple and cost-effective chemical route to obtain a highly stable and efficient quaternary mesoporous 3D nanoflower-like NiCuCo2S4 nanocomposite for supercapacitor applications. The NiCuCo2S4 composite exhibited a mixture of NiCo2S4 and CuCo2S4 phases, confirming the formation a quaternary NiCuCo2S4 thin film. A surface morphological analysis revealed the unique nanoflower-like nanostructure of the annealed composite. The electrochemical analysis of the NiCuCo2S4 electrode demonstrated a high specific capacity (Cs) of 414 mAh g?1 at a lower scan rate of 10 mV s?1 and a superior cycling stability up to 3000 cycles. A solid-state hybrid supercapacitor (SHS) was also constructed by the NiCuCo2S4 and AC powder as positive and negative electrodes, respectively. The NiCuCo2S4//AC hybrid cell produced a high Cs, energy density, and power density of 159 F g?1, 35.19 Wh kg?1, and 0.66 kW kg?1, respectively at a current density of 10 mA with good cycling stability. The results demonstrated that the fabrication process is effective for the development of a novel quaternary transition metal sulfide (TMS) electrode.  相似文献   

18.
《Ceramics International》2017,43(16):13710-13716
Development of novel electrode materials with high energy and power densities for lithium-ion batteries (LIBs) is the key to meet the demands of electric vehicles. Transition metal oxides that can react with large amounts of Li+ for electrochemical energy storage are considered promising anode materials for LIBs. In this work, NiCo2O4 nanosheets and nanocones on Ni foam have been synthesized via general hydrothermal growth and low-temperature annealing treatment. They exhibit high rate capacities and good cyclic performance as LIB anodes owing to their architecture design, which reduces ion and electron transport distance, expands the electrode–electrolyte contact, increases the structural stability, and buffers volume change during cycles. Notably, NiCo2O4 nanosheets deliver an initial capacity of 2239 mAh g−1 and a rate capacity of 964 mAh g−1 at current densities of 100 and 5000 mA g−1, respectively. The corresponding values of nanocones are 1912 and 714 mAh g−1. Hence, the as-synthesized NiCo2O4 nanosheets and nanocones, which are carbon-free and binder-free with higher energy densities and stronger connections between active materials and current collectors for better stability, are promising for use in advanced anodes for high-performance LIBs.  相似文献   

19.
《Ceramics International》2019,45(14):16904-16910
There is still a great challenge to develop new-style battery-type electrode materials with low resistance, large surface area, and stable microstructures on carbon fabric, which limited the development of flexible devices. In this work, NiCo2O4 nanoneedle@NiMn2O4 nanosheet core-shell arrays are constructed on the carbon fabric as a high-capacitance and long-life supercapacitor electrode for the first time. Benefiting from this kind of binder-free core-shell microstructure, the CF@NiCo2O4@NiMn2O4 electrode displays extraordinary specific-capacitance of 539.2 F g−1 at a current density of 2 A g−1, and nearly 93.0% retention of total capacitance even after discharging 5000 cycles. The outstanding properties of the hybrid electrode demonstrate that it is of great potential for flexible supercapacitors and batteries the application.  相似文献   

20.
Binary metal oxide, nickel-cobalt oxide (NiCo2O4), was hydrothermally synthesized for the successful utilization as electrochemical electrode in chemical sensor. Benefited from the large surface area, binary NiCo2O4 stacked hexagonal nanoplates (HNPs) based electrode was utilized for the electrochemical sensing application towards teratogenic chemical i.e. 3-methoxypropionitrile (3-MPN). The sensing results displayed a reproducible sensitivity of ~605 μAμM?1cm?2, detection limit of ~11.8 μM with the correlation coefficient (R) of ~0.99502 and good linearity from ~10 μM to ~100 μM. Stability and repeatability of binary NiCo2O4 stacked HNPs based electrode was investigated with satisfactory results. Our synthesized binary NiCo2O4 stacked HNPs based electrode is promising for sensor applications and thus, enlightens the possibility of synthesizing other binary oxide materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号