首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(9):12184-12192
In this study, WC-15 wt% Al2O3 composites were prepared using the vacuum hot-pressing sintering method. The high-temperature (600–800 °C) oxidation behaviour of WC-15 wt% Al2O3 composites was investigated and compared with that of WC-6wt.%Co cemented carbides. The results showed that the oxidation resistance of WC-15 wt% Al2O3 composites was better than that of WC-6wt.%Co cemented carbides at relatively high temperatures (700–800 °C). At 800 °C, an oxide layer was formed on the surface of WC-15 wt% Al2O3 composites, which included WO3 and Al2O3. The dispersion of alumina in the composites hindered the further diffusion of oxygen, thus improving the oxidation resistance. The Arrhenius activation energies of WC-15 wt% Al2O3 composites and WC-6wt.%Co cemented carbides were 110 ± 1 kJ/mol and 167 ± 2 kJ/mol at 600–800 °C, respectively.  相似文献   

2.
Plasma spray coating with ceramic carbide is a promising approach for improving the surface quality of the materials. In this work, the effectiveness of tungsten carbide (WC), chromium carbide (Cr3C2), and the composite coating of the two powders in the weight ratio of 50:50 were investigated. In the erosion test, aluminum oxide (Al2O3) particles were combined with a high-speed air-jet and impinged at 90° on the top surface of the material. Electrochemical polarization and electrochemical impedance spectroscopy studies were conducted with a 3.5 wt.% of sodium chloride (NaCl) solution as the electrolyte. Using a scanning electron microscope, the surface morphology of powders and coatings, as well as the mechanisms of erosion and corrosion, were studied. Energy-dispersive X-ray analysis and X-ray diffractometry were used to reveal the composition and elemental distribution of the feedstock powders and coatings. Because of the presence of hard phases, the composite coating shows the highest average microhardness of 1350.2 HV. The composite coating exhibits improved erosive wear resistance with an increase in erodent exposure time. The Cr3C2 coating has a reduced corrosion current density of 1.404 × 10−5 mA/cm2 and a higher charge transfer resistance of 2086.75 Ω cm2 due to passivation.  相似文献   

3.
We describe the phase stability of a cemented tungsten carbide prepared using a high-vanadium tool steel as the cementing/binder phase and confirm suppression of (Fe, W)6C η-phase formation, attributed to the preferential formation of a V0.78W0.22C1−x phase that exists as islands within the Fe-rich binder matrix. The samples were prepared using spark plasma sintering (SPS), starting from commercially available WC and A11-LVC tool steel powders. The starting powders were ball milled adding 10, 15, and 20 vol.% steel. An A11-LVC tool steel was chosen as a low-cost hard steel (49 HRC) that does not contain Ni or Co but has a high vanadium (~9 wt.%) and carbon (~1.75 wt.%) content. Our results show that sintering by SPS can produce high-density (>98%) WC-steel specimens in which the matrix wets the WC grain surfaces and formation of the brittle η-phase is avoided. The η phase is often regarded as embrittling and undesirable, and its presence can result in degradation of mechanical properties. Microhardness values for the WC-10 and WC-15 vol.% steel samples were 12.3 ± 1.2 and 13.0 ± 0.9 GPa, respectively, whereas the fracture toughness values were 8.83 ± 0.48 and 8.81 ± 0.61 MPa·m1/2, respectively.  相似文献   

4.
In this study, bulk Cr3C2-20 wt % Ni cermets were successfully fabricated by high-energy milling and pressureless sintering in a vacuum furnace. Microstructures, elements distribution, and high temperature oxidation mechanism were researched by SEM, EPMA, and differential thermal analyzer (DTA), respectively. Oxidation kinetics regularity of bulk Cr3C2-20 wt % Ni cermets was investigated at 600–800 °C for the first time. Isothermal cyclic oxidation experiments were studied using the heat-treatment furnace for 100 h. The results indicated that the porosity decreased, while the hardness, bending strength, and fracture toughness increased with an improvement in the vacuum degree. Cr3C2-20 wt % Ni cermets displayed outstanding oxidation resistance and the dynamic oxidation curves followed the parabolic rate law. Besides, the oxidation rate constants increased three orders of magnitudes with an increase in the oxidation temperatures from 600 °C to 800 °C. The mechanism of the oxidation resistance was the generation of the protective and dense oxide layers on the sub-surface of the oxidation specimens, which hindered the diffusion of Cr3+, Ni2+, O2 and effectively protected the substrate from further oxidation.  相似文献   

5.
《Ceramics International》2020,46(7):8787-8795
In the paper, WC nanopowders are successfully prepared by carbothermal reduction method, and the effect of tungsten oxide source on the phase structure evolution and products properties of the as-synthesized WC nanopowders has been investigated. Four tungsten oxide powders are chosen as tungsten oxide sources, e.g., rods-like WO3 , WO3 nanopartiles, WO3 micro-particles and WO2.9 micro-particles. Compared with other three tungsten oxide sources, the WO3 micro-particles possesses small particle size, less agglomerates and good dispersity and the uniform tungsten oxide-carbon mixture after ball milling can be easily obtained. The appropriate tungsten oxide source can result in lower processing temperature (≤1200 °C) and shorter holding time (≤3 h). Single-phase WC powders with average particle size of 100 nm and uniform particle distribution can be achieved by micro-particle-like WO3 at 1100 °C for 3 h. The as-prepared WC products by other three tungsten oxide sources exhibit problems of more aggregates, non-uniform particle size and large particle size (250 nm), respectively. In addition, the method can provide a facile, low-cost, efficient, and industrially feasible pathway for large scale preparation of WC nanopowders.  相似文献   

6.
Two different preparation routes were applied to process WC-MgO composites with varying MgO contents (4.1 wt.% and 5.9 wt.% MgO). WC-MgO powder mixtures were synthesized by a milling process at 600 rpm for 6 h of partially oxidized WC (WC + WO3), Mg3N2 and C. Alternatively, WC and MgO as initial powders were used. For consolidation of the powder mixtures the field-assisted sintering technology (FAST) was used. X-ray diffraction shows that samples out of different powder mixtures and sintered between 1600 °C and 1750 °C exhibited WC, MgO and the W2C phase independent of the preparation route of the powder mixtures. A higher density and better mechanical properties (hardness and indentation fracture toughness) of WC-MgO were achieved of pure WC and MgO as initial powders were consolidated by FAST. It was found that a lower MgO content results in higher hardness values and in a slightly decreased indentation fracture toughness.  相似文献   

7.
《Ceramics International》2017,43(17):14726-14731
Ultrafine (Ti, W, Mo)(C, N)-(Ni, Co) cermet powders were rapidly synthesized from various metal oxides, mainly anatase-TiO2, by spark plasma assisted carbothermal reduction-nitridation (SPCRN) at low temperature. The phase evolution of the SPCRN reaction was investigated using X-ray diffraction (XRD) and the microstructure of the product powders was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). NiO, Co3O4 and MoO3 were converted to Ni, Co and Mo2C by CR reaction at temperatures below 900 °C. WO3 was successively transformed from W2C to WC by CR reaction up to 1100 °C. Finally, at up to 1350 °C, (Ti, W, Mo)(C, N) formed into the sequence of TiO2, Ti4O7, Ti3O5, Ti(O, N), Ti(C, N), (Ti, W)(C, N) and (Ti, W, Mo)(C, N). The crystal structure of (Ti, W, Mo)(C, N)-(Ni, Co) cermet powders was analyzed by the Rietveld method and transmission electron microscopy (TEM). The findings demonstrated that the pure (Ti, W, Mo)(C, N)-(Ni, Co) cermet powders with grain size of below 0.5 µm were synthesized from metal oxides by SPCRN reaction at 1400 °C for 10 min.  相似文献   

8.
《Ceramics International》2019,45(16):19610-19616
In this work, a novel way was developed to facilitate the sintering of a binderless cemented carbide with Al2O3 contain while improving its toughness. WC- 1.87 wt % Al2O3- 4.13 wt %ZrO2 cemented carbides with 1 wt % B2O3 as additives were consolidated by high energy ball-milling and spark plasma sintering the as-milled composite powders. The effects of 1 wt % B2O3 content on the sintering behaviour, microstructure and mechanical properties of the obtained cemented carbides were investigated. The presence of B2O3 significantly lowers the sintering temperature by forming liquid phase and react with Al2O3 which contributed to obtaining fully dense specimens at 1350 °C and maintains fine grain sizes of WC until the temperature exceeding 1450 °C. The sintering temperature of the specimens with optimum mechanical properties has been also reduced comparing that of the original WC- 1.87 wt % Al2O3- 4.13 wt %ZrO2 cemented carbides. Furthermore, the addition of B2O3 triggered the reaction between B2O3 and Al2O3 resulting in forming in-situ elongated aluminium borate grains (A4B2O9 and A18B4O33 whiskers), which promoted the toughness. The specimens sintered at 1450 °C exhibited optimal mechanical properties: the Vickers hardness and fracture toughness were 19.26 GPa and 11.49 MPa m1/2, respectively.  相似文献   

9.
《Ceramics International》2022,48(2):1560-1566
The development of highly stable and efficient oxide-based red phosphors is urgently required for next-generation lighting devices. Herein, we report the micro/crystal structures and luminescent properties of single-phase Eu2(WO4)3 and Eu3+-doped WO3-Eu2(WO4)3 composite phosphors prepared by a one-step conventional solid-state reaction method in air atmosphere. As increasing Eu contents in the mixtures of WO3 and Eu2O3, the intensities of the X-ray diffraction peaks of Eu2(WO4)3 increased while that of WO3 decreased. The photoluminescence intensity of the synthesized phosphors increased with increase in the Eu content when calcined at 900 °C, while it degraded at a higher temperature. Red-emitting single-phase Eu2(WO4)3 powders were successfully obtained when the WO3 and Eu2O3 powders were calcined in the ratio of 3:1. The intensity of the red emission spectra of the Eu2(WO4)3 phosphor was higher than those of the 6, 12, and 24 at.% Eu-added WO3 composites at excitation wavelengths of 394 and 465 nm. On the other hand, the intensity of emission from the single-phase phosphor was lower than that of the Eu-doped WO3-Eu2(WO4)3 composites under excitation of UV light at 254 nm. Thus, we propose two prospective phosphors for application as red phosphors at various wavelengths.  相似文献   

10.
Chromium (III) oxide has been widely used as a coating material for corrosion resistance. In this study, electrophoretic deposition (EPD) of nano chromium (III) oxide (Cr2O3) particle (60 nm) was investigated to develop coatings with potential applications of anticorrosive material. The stable suspension of Nano‐Cr2O3 particles were obtained in the mixture of acetylacetone and ethanol containing 0.00025 M nitric acid. The coating growth rate was studied with using different deposition times in the range of 1–30 min at voltages of 50–150 V with various concentrations of suspension. The electrophoretic Cr2O3 coating was sintered at 1000°C and 1200°C for 2 h. The micro‐morphology of coating was qualitatively characterized by focused ion beam scanning electron microscopy (FIB/SEM). The SEM micrographs obviously showed that the electrophoretic Cr2O3 coating has formed a uniform and dense ultrathin layer after sintering at 1200°C. We demonstrated that nano‐Cr2O3 coating could be easily obtained by EPD for the surface modification of metallic materials for potential interest in hard wear‐resistant and/or low‐friction coatings.  相似文献   

11.
Low-temperature sintering of 12Pb(Ni1/3Sb2/3)O3–40PbZrO3–48PbTiO3 (12PNS–40PZ–48PT) calcined powders with V2O5 and excess PbO additives has been investigated. Adding 0.20 to 0.40 wt.% V2O5 and 1.0 wt.% excess PbO to 12PNS–40PZ–48PT calcined powders and sintering at 950 °C for 4 h, the sintered samples only contain the perovskite structure. The calcined powders are doped with 3.0 wt.% excess PbO and 0.20 to 1.0 wt.% V2O5 and sintered at 950 °C for 4 h, the coexistence of both tetragonal and rhombohedral phases with the minor phase of pyrochlore is observed. During the calcined powders contain 1.0 wt.% excess PbO and are sintered at 950 to 975 °C for 2 h, the bulk density decreases with V2O5 addition greater than 0.6 wt.%. When the calcined powders with 3.0 wt.% excess PbO are sintered at 900 to 975 °C for 2 h, the bulk density decreases with added V2O5 content increased. The values of the planar coupling coefficient (Kp) approach the maxima, namely, 0.51 obtained for the compacts containing 0.40 wt.% V2O5 and 1.0 wt.% excess PbO and sintered at 950 °C. As the calcined powders are added with 3.0 wt.% excess PbO and 0.80 wt.% V2O5 and sintered at 975 °C for 2 h, the maximum Qm value 1100 is obtained.  相似文献   

12.
《Ceramics International》2022,48(11):15227-15235
High-performance and low-carbon MgO–C refractories are important refractories for smelting ultra-low carbon steel and clean steel. Based on this, Cr3C2/C composite powders were synthesized by the molten-salt method, and used as an additive to prepare low-carbon MgO–C refractories under nitrogen atmosphere. The phase, morphology and oxidation kinetics of Cr3C2/C composite powders were studied. In addition, the effect of Cr3C2/C composite powders on the morphology, mechanical properties, thermal shock resistance, and corrosion resistance of MgO–C refractories was investigated. The results indicated that the Cr3C2/C composite powders exhibited superior oxidation resistance than flake graphite. Moreover, the Cr3C2/C composite powders were introduced into the MgO–C refractories. Compared with the sample without Cr3C2/C composite powders, the introduction of 1 wt% Cr3C2/C composite powders significantly improved the thermomechanical properties and corrosion resistance of the material, its CMOR, CCS before and CCS after thermal shock were 9.06 MPa, 50.40 MPa and 32.60 MPa, respectively, and the corrosion index was significantly reduced from 44.6% to 26.5%.  相似文献   

13.
In an attempt to develop the composition and properties of W2C-(W,Ti)C-TiC and WC-WC1-x-VC-V super hardmetals, spark plasma sintering (SPS) method was implemented. WC powders were mixed separately with 10?wt% Ti and 10?wt% V in a high energy mixer mill and sintering processes were performed at temperatures of 2150 and 2000?°C, respectively. XRD investigations revealed the formations of TiC and (Ti,W)C as the reaction products in WC-10?wt% Ti composite. Moreover, the interfacial reaction between WC and V led to the formation of WC1-x and VC compounds. A higher bending strength (613?±?25?MPa) and fracture toughness (4.1?±?0.58?MPa?m1/2) were obtained for WC-10?wt% V samples compared to WC-10?wt% Ti, While the WC-10?wt% Ti composite showed a higher value of hardness (3128?±?42 Vickers) in comparison to WC-10?wt% V (2632?±?39 Vickers), which can act as a super hard cermet.  相似文献   

14.
《Ceramics International》2017,43(7):5490-5497
A new red-brown ceramic pigment based on chromium-doped ferrian armalcolite have been synthesized and characterized. (MgFe)(CrxTi3−xFe)O10 powders (x=0–0.3) fired at 1200 °C crystallize ferrian armalcolite as the only crystalline phase detected. Samples fired at 1000 °C show red-brown shades in glazes that darken and bluish (b* turns to negative values) at 1200 °C. The x=0.2 sample fired at 1000 °C shows the best red colour (L*a*b*=49.5/15.2/10.3). Assignment of bands in the UV–Vis–NIR spectra is difficult due to the overlapping of Cr3+, Cr4+ and Fe3+ absorptions in octahedral coordination. Analysis of UV–Vis–NIR spectra of powders shows that these spectra are dominated by the strong absorption associated to Fe3+ ions in octahedral sites. In contrast, an intense band at 520 nm dominates the UV–Vis–NIR spectra of glazed samples, which should be associated to Cr4+ in octahedral coordination. This absorption increases when the amount of chromium increases, indicating that chromium is the real chromophore of the system. Finally, the weak shoulder at 600 nm and the double weak band at 700 nm, detected more evidently when chromium amount in sample increases, indicate the progressive presence of Cr3+ in octahedral sites. The entrance of Cr4+ in x=0.1 sample shrinks the crystalline cell, but when chromium amount in the samples increases, both Cr4+ and Cr3+enter simultaneously and the unit cell remains practically stable. The microstructure of the powders analysed by SEM microscopy indicates aggregates of 6–10 fine particles of 200–400 nm of diameter. The addition of mineralizers (boric acid, sodium perborate, NaF and a mixture BaF2.4MgF2) does not modify significantly the reactivity of the system; at 1000 °C hematite and rutile remain as residual crystalline phases, except in NaF additions where the crystallization of NaFeTi3O8 is detected. SEM-EDX mapping analyses of pigment powders confirm in all cases a homogeneous distribution of ions in the particles.  相似文献   

15.
Phosphor-convert (pc) near-infrared (NIR) LED is the next-generation smart NIR light sources. Thus, NIR phosphors are quickly developed. The K3Al1−xF6:xCr3+ (KAF:Cr3+) NIR phosphor shows broadband emission from 650 to 900 nm under 430 nm and can be used to fabricate NIR LEDs. In this work, KAF:Cr3+ phosphors were prepared by a hydrothermal method for the first time. Morphologies and NIR properties are tuned by controlling the hydrothermal processes. Different from the cubic KAF:Cr3+ synthesized by a coprecipitation method, KAF:Cr3+ synthesized by the hydrothermal method shows the tetragonal phase. The optimized KAF:3%Cr3+ shows an internal quantum efficiency of about 31.4%. A NIR pc-LED device was fabricated by integrating the KAF:3%Cr3+ phosphor with a blue LED chip (~450 nm). The output power of NIR light is about 5.5 mW driven at 150 mA.  相似文献   

16.
In this work, a series of Al2O3–Ce:YAG phosphor powders were synthesized by regulating the excess Al3+ of (Y,Ce)3Al5O12 via coprecipitation method for the first time, where Al3+, Ce3+, and Y3+ elements were uniformly distributed. With the increase of Al3+ content, the morphology of the powders changed from wormlike shapes to flaky shapes, and Y3Al5O12 phases had a tendency to convert to YAlO3 phases. The x wt.% Al2O3–(Y0.999Ce0.001)3Al5O12 (x = 20, 30, 40, 50, 60, and 70) composite phosphor ceramics (CPCs) were obtained by vacuum sintering (1775°C × 10 h), where Al2O3 and Ce:YAG phases were also well-distributed. When the Al2O3 content was 30–40 wt.%, the average grain size of Al2O3 was close to that of Ce:YAG. A solid-state laser lighting device was constructed by a 450 nm laser source and CPCs in a reflection mode. By adjusting the laser power, the correlated color temperature (CCT) values of white laser diodes (LDs) were achieved close to the standard white light of 6500 K. Impressively, the white LDs equipped with the 40 wt.% Al2O3-containing CPCs showed the optimum CCT of 6498 K (color coordinates: 0.31 and 0.38), as well as a high luminous flux of 1169 lm and efficiency of 166 lm/W at the LD power of 7.05 W. This work has provided a potential idea to optimize the composition uniformity of Al2O3–Ce:YAG CPCs as also to explore their excellent performance in the application of white laser lighting.  相似文献   

17.
《Ceramics International》2022,48(18):26063-26071
In this study, thick Cr2AlC coatings were first synthesized via plasma spraying of Cr3C2–Al–Cr agglomerated powders and post annealing. The microstructure evolution and mechanical properties of the Cr2AlC coatings annealed at 500–1000 °C were investigated. The as-sprayed coatings exhibited a lamellar structure, primarily consisting of Cr2AlC, Cr7C3, Cr23C6, and (Cr, Al)Cx solid solutions. The short residence time during spraying led to incomplete reactions in the Cr3C2@Al–Cr agglomerates, resulting in the formation of (Cr, Al)Cx. Post annealing provided sufficient energy for the transition of (Cr, Al)Cx → Cr2AlC. With an increase in the annealing temperature (<900 °C), gradual transition of the (Cr, Al)Cx phase led to a slight increase in the Cr2AlC content, and thus, the as-annealed coatings maintained high hardness (>1000 HV0.2) with improved fracture toughness. Higher annealing temperatures (>900 °C) promoted clear enhancement of the Cr2AlC content, thus reducing the coating hardness. The transition phase (Cr, Al)Cx and high temperature annealing were the primary factors to promoting the formation of the Cr2AlC phase in sprayed coatings. This study indicates that the Cr3C2@Al–Cr agglomerates can be effective alternatives to expensive MAX phase powders as feedstock for plasma spraying of Cr2AlC coatings.  相似文献   

18.
WC-40 vol.%Al2O3 composites were prepared by high energy ball milling followed by hot pressing. The tungsten carbide (WC) and commercial alumina (Al2O3) powders composed of amorphous Al2O3, boehmite (AlOOH) and χ-Al2O3 were used as the starting materials. The phase transformation during sintering, the influence of sintering temperature and holding time on the densification, microstructure, Vickers hardness and fracture toughness and the toughening effects of WC-40 vol.%Al2O3 composites were investigated. The results showed that the amorphous Al2O3, AlOOH and χ-Al2O3 were transformed to α-Al2O3 completely during the sintering process. With the increasing sintering temperature and holding time, the relative density increased and both the Vickers hardness and fracture toughness increased initially to the maximum values and then decreased. When the as milled powders were hot pressed at 1540 °C for 90 min, a relative density of 97.98% and a maximum hardness of 18.65 GPa with an excellent fracture toughness of 10.43 MPa m1/2 of WC-40 vol.%Al2O3 composites were obtained.  相似文献   

19.
WC–Co cemented carbides were prepared via an in situ synthesis method, including the carbothermal prereduction of WO3 and Co2O3 to remove all oxygen and a subsequent carbonization-vacuum sintering process. The experimental results revealed that as the prereduction temperature increased from 1000 to 1200°C, the grain sizes of WC in WC–6Co and WC–12Co cemented carbides increased from .91 to 1.09 and .97 to 1.19 μm, respectively. Further, the fracture toughness of the sintered WC–6Co and WC–12Co cemented carbides increased from 9.97 to 10.83 and 11.11 to 18.30 MPa m1/2, respectively. In contrast, the hardness of the WC–6Co and WC–12Co cemented carbides decreased from 1477 to 1368 and 1351 to 1184 HV30, respectively. For a given prereduction temperature, an increase in Co content can improve the fracture toughness while lowering the hardness. In addition, an increase in the prereduction temperature or Co content led to an increase in the grain size of WC, which resulted in a transgranular fracture as the dominant mode.  相似文献   

20.
《Ceramics International》2020,46(6):7259-7267
Co-precipitation was successfully applied to synthesize the Sc3+ doped In2-xScx (WO4)3 (x = 0, 0.3, 0.6, 0.9 and 1.2) compounds. The composition- and temperature-induced structural phase transition and thermal expansion behaviors of Sc3+ doped In2(WO4)3 were investigated. Results indicate that In2-xScx (WO4)3 crystalizes in a monoclinic structure at 300 °C for x ≤ 0.3 and changes into hexagonal structure for x ≥ 0.6. Hexagonal In1.1Sc0.9(WO4)3 displays negative thermal expansion (NTE) with an average linear coefficient of thermal expansion (CTE) of −1.85 × 10−6 °C −1. After sintering at 700 °C and above, a phase transition from hexagonal to orthorhombic phase was observed in In2-xScx (WO4)3 (x ≥ 0.6). Sc3+ doping successfully reduce the temperature-induced phase transition temperature of In2-xScx (WO4)3 ceramics from 250 °C (x = 0) to room temperature (x = 0.9). When x = 0.9 and 1.2, the average linear CTEs of In2-xScx (WO4)3 ceramics are −5.45 × 10−6 °C−1 and -4.43 × 10−6 °C−1 in a wider temperature range of 25–700 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号