首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water-based sol-gel electrospinning is employed to manufacture perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber cathodes for intermediate-temperature solid oxide fuel cells. LSCF fibrous scaffolds are synthesized through electrospinning of a sol-gel solution employing water as the only solvent. Morphological characterizations demonstrate that the LSCF fibers have highly crystalline structure with uniform elemental distribution. After heat treatment, the average fiber diameter is 250 nm and the porosity of the nanofiber tissue is 37.5 %. The heat treated LSCF nanofibers are applied directly onto a Ce0.9Gd0.1O1.95 (CGO) electrolyte disk to form a symmetrical cell. Electrochemical characterization is carried out through electrochemical impedance spectroscopy (EIS) in the temperature range 550?°C–950?°C, and reproducibility of the electrochemical performance for a series of cells is demonstrated. At 650?°C, the average measured polarization resistance Rp is 1.0 Ω cm2. Measured performance decay is 1 % during the first 33?h of operation at 750?°C, followed by an additional 0.7 % over the subsequent 70?h.  相似文献   

2.
This study reports the successful preparation of a single-phase cubic (Ba0.5Sr0.5)0.8La0.2CoO3?δ perovskite by the citrate–EDTA complexing method. Its crystal structure, thermogravimetry, coefficient of thermal expansion, electric conductivity, and electrochemical performance were investigated to determine its suitability as a cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Its coefficient of thermal expansion shows abnormal expansion at 300 °C, which is associated with the loss of lattice oxygen. The maximum conductivity of a (Ba0.5Sr0.5)0.8La0.2CoO3?δ electrode is 689 S/cm at 300 °C. Above 300 °C, the electronic conductivity of (Ba0.5Sr0.5)0.8La0.2CoO3?δ decreases due to the formation of oxygen vacancies. The charge-transfer resistance and gas phase diffusion resistance of a (Ba0.5Sr0.5)0.8La0.2CoO3?δ–Ce0.8Sm0.2O1.9 composite cathode are 0.045 Ω cm2 and 0.28 Ω cm2, respectively, at 750 °C.  相似文献   

3.
《Ceramics International》2015,41(4):5984-5991
The application of the La2NiO4+δ (LNO), one of the Ruddlesden–Popper series materials, as a cathode material for intermediate temperature solid oxide fuel cells is investigated in detail. LNO is synthesized via a complex method using ethylenediaminetetraacetic acid (EDTA) and citric acid. The effect of the calcination temperature of the LNO powder and the sintering temperature of the LNO cathode layer on the anode-supported cell, Ni–YSZ/YSZ/GDC/LNO, is characterized in view of the charge transfer resistance and the mass transfer resistance. Charge transfer resistance was not significantly affected by calcination and sintering temperature when the sintering temperature was not lower than the calcination temperature. Mass transfer resistance was primarily governed by the sintering temperature. The unit cell with the LNO cathode sintered at 1100 °C with 900 °C-calcined powder presented the lowest polarization resistance for all the measured temperatures and exhibited the highest fuel cell performances, with values of 1.25, 0.815, 0.485, and 0.263 W cm−2 for temperatures of 800, 750, 700, and 650 °C, respectively.  相似文献   

4.
In this study, the effects of Cu-ion substitution on the densification, microstructure, and physical properties of LaCo0.4Ni0.6-xCuxO3-δ ceramics were investigated. The results indicate that doping with Cu ions not only enhances the densification but also promotes the grain growth of LaCo0.4Ni0.6-xCuxO3-δ ceramics. The Cu substitution at x  0.2 can suppress the formation of La4Ni3O10, while the excess Cu triggers the formation of La2CuO4.032 phase. The p-type conduction of LaCo0.4Ni0.6O3-δ ceramic was significantly raised by Cu substitution because the acceptor doping (CuNi') triggered the formation of hole carriers; this effect was maximized in the case of LaCo0.4Ni0.4Cu0.2O3-δ composition (1480 S cm?1 at 500 °C). Thermogravimetric data revealed a slight weight increase of 0.29% for LaCo0.4Ni0.4Cu0.2O3-δ compact up to 871 °C; this is due to the incorporation of oxygen that creates metal vacancies and additional h?carriers, partially compensating the conductivity loss due to the spin-disorder scattering. As the temperature of the LaCo0.4Ni0.4Cu0.2O3-δ compacts rose above 871 °C, significant weight loss with temperature was observed because of the release of lattice oxygen to the ambient air as a result of Co (IV) thermal reduction accompanied by the formation of oxygen vacancies. A solid oxide fuel cell (SOFC) single cell with Sm0.2Ce0.8O2-δ (electrolyte) and LaCo0.4Ni0.4Cu0.2O3-δ (cathode) was built and characterized. The Ohmic (0.256 Ω cm2) and polarization (0.434 Ω cm2) resistances of the single cell at 700 °C were determined; and the maximum power density was 0.535 W cm?2. These results show that LaCo0.4Ni0.4Cu0.2O3-δ is a very promising cathode material for SOFC applications.  相似文献   

5.
The key issue that limits the electrochemical performance of proton-conducting solid oxide fuel cells (H+-SOFCs) is the sluggish kinetics of the oxygen reduction reaction (ORR) of cathode at intermediate and low temperatures. Herein, oxygen vacancy engineering is conducted on cobalt-free Ba0.95La0.05FeO3?δ (BLF) by nickel substitution, which is confirmed by density functional theory computations. Nickel-substituted BLF material (Ba0.95La0.05Fe1?xNixO3?δ (x = 0, 0.1, 0.2, 0.3)) can promote the generation of oxygen vacancies and improve catalytic activity, which is found to be in line with the experimental results of XPS. The phase structure, microstructure, and electrochemical performance of Ba0.95La0.05Fe0.8Ni0.2O3?δ (BLFNi0.2) are well-investigated. The single cells with the BLFNi0.2-BaCe0.7Zr0.1Y0.1Yb0.1O3?δ (BCZYYb) composite cathode achieve low polarization resistance (Rp) of 0.099 Ω cm2 and a peak power density of 631 mW cm?2 at 700 °C while maintaining good durability for 120 h with no observable degradation. The results demonstrate that Ni-doped BLF is a promising cobalt-free cathode material for H+-SOFCs.  相似文献   

6.
《Ceramics International》2019,45(16):20226-20233
One of the significant motivations in developing intermediate-temperature solid oxide fuel cells (IT-SOFCs) is to design cobalt-free cathodes with high electrocatalytic activity and CO2 tolerance ability. In this work, iron-based perovskite materials Bi0.5Sr0.5Fe1-xTaxO3-δ are investigated as potential cathodes for IT-SOFCs. The effects of Ta doping on crystal structure, thermal expansion coefficients and electrocatalytic activities are systematically evaluated. Among the Ta-doped oxides, Bi0.5Sr0.5Fe0.9Ta0.1O3-δ exhibits the highest electrochemical performance with the lowest polarization resistance (Rp) of 0.124 Ω cm2 at 700 °C in air. The peak power density of the single cell with Bi0.5Sr0.5Fe0.9Ta0.1O3-δ cathode reaches 1.36 W cm−2 at 700 °C. Compared to Bi0.5Sr0.5FeO3-δ, the improved CO2 tolerance of Ta-doped oxides can be attributed to the high acidity of Ta5+ cations and the increased average metal bond energy (ABE) within the material. Further study proves that the adsorption-dissociation process of molecular oxygen is the limiting step for oxygen reduction reaction (ORR) on Bi0.5Sr0.5Fe0.9Ta0.1O3-δ cathode.  相似文献   

7.
Nanoperovskite oxides, Ba0.2Sr0.8Co0.8Fe0.2O3?δ (BSCF), were synthesized via the co-precipitation method using Ba, Sr, Co, and Fe nitrates as precursors. Next, half cells were fabricated by painting BSCF thin film on Sm0.2Ce0.8Ox (samarium doped ceria, SDC) electrolyte pellets. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS) measurements were carried out on the BSCF powders and pellets obtained after sintering at 900 °C. Investigations revealed that single-phase perovskites with cubic structure was obtained in this study. The impedance spectra for BSCF/SDC/BSCF cells were measured to obtain the interfacial area specific resistances (ASR) at several operating temperatures. The lowest values of ASR were found to be 0.19 Ω cm2, 0.14 Ω cm2 0.10 cm2, 0.09 Ω cm2 and 0.07 Ω cm2 at operating temperatures of 600 °C, 650 °C, 700 °C, 750 °C and 800 °C, respectively. The highest conductivity was found for cells sintered at 900 °C with an electrical conductivity of 153 S cm?1 in air at operating temperature of 700 °C.  相似文献   

8.
La0.58Sr0.4Co0.2Fe0.8O3?δ–Ce0.8Gd0.2O2 (LSCF–GDC) composite cathodes with various weight ratios 90%, 70% and 50% of LSCF were prepared. Mechanical properties, thermal expansion properties and electrical properties were measured for potential applications in solid oxide fuel cells (SOFCs) with graded cathodes. LSCF and GDC as pure cathode and electrolyte materials were characterized as reference. The absence of new phases as confirmed by X-ray diffraction (XRD) analysis demonstrated the excellent compatibility between the cathode and electrolyte materials. Mechanical properties such as hardness and fracture toughness were measured by the micro-indentation technique, while hardness and elastic modulus were measured by the nano-indentation technique. Thermal expansion behavior was recorded by a dilatometer. Electrical conductivity was measured by the four probe DC method. The 50% LSCF–GDC composite has the lowest relative density among all the samples. Thermal expansion coefficients (TECs) and electrical conductivity increased with addition of LSCF contents in the composite, while mechanical properties depended more on the density than the LSCF content.  相似文献   

9.
Lanthanum-based iron- and cobalt-containing perovskite has a high potential as a cathode material because of its high electro-catalytic activity at a relatively low operating temperature in solid oxide fuel cells (SOFCs) (600–800). To enhance the electro-catalytic reduction of oxidants on La0.6Sr0.4Co0.2Fe0.8O3?δ (LSCF), Ga doped ceria (Ce0.9Gd0.1O1.95, GDC) supported LSCF (15LSCF/GDC) is successfully fabricated using an impregnation method with a ratio of 15 wt% LSCF and 85 wt% GDC. The cathodic polarization resistances of 15LSCF/GDC are 0.015 Ω cm2, 0.03 Ω cm2, 0.11 Ω cm2, and 0.37 Ω cm2 at 800 °C, 750 °C, 700 °C, and 650 °C, respectively. The simply mixed composite cathode with LSCF and GDC of the same compositions shows 0.05 Ω cm2, 0.2 Ω cm2, 0.56 Ω cm2, and 1.20 Ω cm2 at 800 °C, 750 °C, 700 °C, and 650 °C, respectively. The fuel cell performance of the SOFC with 15LSCF/GDC shows maximum power densities of 1.45 W cm?2, 1.2 W cm?2, and 0.8 W cm?2 at 780 °C, 730 °C, and 680 °C, respectively. GDC supported LSCF (15LSCF/GDC) shows a higher fuel cell performance with small compositions of LSCF due to the extension of triple phase boundaries and effective building of an electronic path.  相似文献   

10.
《Ceramics International》2017,43(10):7929-7934
Sc-substituted La0.6Sr0.4FeO3-δ (LSFSc) has been synthesized for utilization as an integrated ceramic interconnector of tubular-solid oxide cells (SOCs). Redox stability and electric conductivity of LSFSc were improved by optimizing the scandium (Sc) doping concentration, the pH of the synthetic solutions and the calcination temperature of the organic precursors. The crystalline phases of LSFSc were stable when the pH of the synthetic solution was below 2 and the calcination temperature was over 1200 °C. As the Sc concentration increased, redox stability was improved while the electrical conductivity decreased. To consider the trade-off relationship between electrical conductivity and phase stability, La0.6Sr0.4Fe0.9Sc0.1O3-δ can be considered as one of the stable compositions for an integrated ceramic interconnector of tubular-SOCs.  相似文献   

11.
《Ceramics International》2023,49(19):31569-31575
In this work, (La0.6Sr0.4)0.9Fe0.8Ni0.2O3-δ (LSFN90), a stable, highly ORR-active and cost-efficient perovskite oxide, is developed as cathode materials for solid oxide fuel cell (SOFC). The introduction of A-site deficiency results in the crystal expansion of the cubic perovskite phase and an increase in oxygen vacancy concentration at operating temperature. The LSFN90 cathode displays good oxygen reduction reaction activity and low polarization resistance values. The A-site deficiency facilitates the diffusion of oxygen ions in the electrode and accelerates the surface oxygen exchange reaction. LSFN90 is used as cathode materials for SOFC to prepare anode-supported single cells, achieving maximum power densities of 1.51, 1.27, 0.95 and 0.63 W cm−2 under wet hydrogen (3%H2O–97%H2) atmosphere at 850, 800, 750 and 700 °C, respectively. The introduction of A-site deficiency can greatly enhance the oxygen reduction reaction activity and electrochemical performance of the cathode, demonstrating that LSFN90 has significant potential as a cathode material for practical applications in solid oxide fuel cells.  相似文献   

12.
《Ceramics International》2022,48(1):455-462
The calcium cobaltite Ca3-xLaxCo4-yCuyO9+δ with x and y = 0 and 0.1 were synthesized and the electrical, thermal, and catalytic behaviors for the oxygen reduction reaction (ORR) for use as air electrodes in intermediate-temperature solid oxide fuel cells (IT-SOFCs) were evaluated. X?ray diffraction confirms the Ca3-xLaxCo4-yCuyO9+δ samples were crystallized in a monoclinic structure and scanning electron microscopic image shows lamella-like grain formation. Introduction of dopants decreases slightly the loss of lattice oxygen and thermal expansion co-efficient. The Ca3-xLaxCo4-yCuyO9+δ samples exhibit good phase stability for long-term operation, thermal expansion, and chemical compatibility with the Ce0.8Gd0.2O2-δ electrolyte. Among the studied samples, Ca2.9La0.1Co4O9+δ shows a maximum conductivity of 176 Scm?1 at 800 °C. Although the doped samples exhibit a higher total electrical conductivity, an improved symmetrical cell performance is displayed by the undoped sample. Comparing the sintering temperatures, the composite cathode Ca3Co4O9+δ + Ce0.8Gd0.2O2-δ sintered at 800 °C exhibit the lowest area specific resistance of 0.154 Ω cm2 at 800 °C in air. In the Ca3-xLaxCo4-yCuyO9+δ + GDC composite cathodes, the charge-transfer process at high frequencies presents a major rate limiting step for the oxygen reduction reaction.  相似文献   

13.
A perovskite-type (Ba0.5Sr0.5)0.85Gd0.15Co0.8Fe0.2O3?δ (BSGCF) oxide has been investigated as the cathode of intermediate temperature solid oxide fuel cells (IT-SOFCs). Coulometric titration, thermogravimetry analysis, thermal expansion and four-probe DC resistance measurements indicate that the introduction of Gd3+ ions into the A-site of Ba0.5Sr0.5Co0.8Fe0.2O3?δ (BSCF) leads to the increase in both oxygen nonstoichiometry at room temperature and electrical conductivity. For example, the conductivity of BSGCF is 148 S cm?1 at 507 °C, over 4 times as large as that of BSCF. Furthermore, the electrochemical activity toward the oxygen reduction reaction is also enhanced by the Gd doping. Impedance spectra conducted on symmetrical half cells show that the interfacial polarization resistance of the BSGCF cathode is 0.171 Ω cm2 at 600 °C, smaller than 0.297 Ω cm2 of the BSCF cathode. A Ni/Sm0.2Ce0.8O1.9 anode-supported single cell based on the BSGCF cathode exhibits a peak power density of 551 mW cm?2 at 600 °C.  相似文献   

14.
Developing cathode material with high performance and excellent stability is the ultimate goal for solid oxide fuel cells (SOFCs). Based on this consideration, we design a new simple perovskite oxide BaCo0.8Zr0.1Y0.1O3-δ (BCZY) as the cathode material of SOFC without any further modification, which has good oxygen reduction reaction (ORR) activity and excellent stability in air and CO2 at an intermediate temperature range of 600 ℃? 800 ℃. The area specific resistance (ASR) of symmetrical cell with BCZY cathode is 0.041 Ω cm2 at 700 ℃, moreover, BCZY cathode keeps good structural and catalytic stability during 100 h test in air. The electrolyte-supported single cell fabricated with BCZY as cathode delivers a maximum power density of 460 mW cm?2 and a superior steady operation over 200 h at 700 ℃. The good thermal physical structure stability of BCZY is further demonstrated by in-situ X-ray diffraction (XRD), good ORR activity and excellent CO2 tolerance are further confirmed by density functional theory (DFT) calculations. These results indicates that BCZY maybe a potential cathode material for intermediate temperature SOFCs (IT-SOFCs).  相似文献   

15.
《Ceramics International》2022,48(21):31418-31427
Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) fuel-cell cathode stands out because of its ultrahigh ionic conductivity and excellent electrocatalytic activity, but it is still very subject to instability. Here, a new strategy of Ce doping is proposed to boost the stability and activity of the BSCF cathode. A one-pot combustion method is employed to synthesize (Ba0.5Sr0.5)1–xCexCo0.8Fe0.2O3-δ (x=0–0.2) cathodes. Both BSCF and (Ba0.5Sr0.5)0.9Ce0.1Co0.8Fe0.2O3-δ have a cubic perovskite structure. (Ba0.5Sr0.5)0.8Ce0.2Co0.8Fe0.2O3-δ shows two phases of cubic perovskite and fluorite ceria. Proper Ce doping can boost the electrical conductivity of BSCF, and can dramatically reduce the polarization resistance of BSCF cathode. Ce doping significantly improved BSCF cathode long-term stability by 160 h. Moreover, ten-percent Ce doping in BSCF highly improves single-cell output performance from 516.33 mW cm?2 to 629.75 mW cm?2 at 750 °C. The results reveal that Ce doping as a potential strategy for enhancing the stability and activity of BSCF cathode is promising.  相似文献   

16.
《Ceramics International》2020,46(3):3082-3090
The substitution of Ca for Sr in the LnSr3-xCaxFe3O10-δ (x = 0–1.5, Ln = La, Pr, and Sm), Ruddlesden-Popper (RP) intergrowth structure was investigated to determine how the physical and electrochemical properties of this potential cathode material in solid oxide fuel cells (SOFCs) are impacted. A small amount of Ca incorporated into the structure reduced the thermal expansion coefficient, improved the electrical conductivity, and increased power density by up to 30% of a La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte-supported single cell. The microstructure and oxygen permeability of the materials were independent of Ca substitution. A phase transformation of LaSr3-xCaxFe3O10-δ to perovskite was observed when the Ca composition of x > 1.0. Among the substitution of Pr and Sm for La in LaSr2.7Ca0.3Fe3O10-δ, only PrSr2.7Ca0.3Fe3O10-δ was pure with no phase transformation found. The co-substitution of Pr and Ca promoted the reduction of Fe, enhanced the oxygen permeation and active surface, and diminished the contact resistance at the cathode-electrolyte interlayer. The co-substitution of Ca and Pr delivered good electrochemical performance of approximately 354 mWcm−2 at 800 °C on a 0.3 mm thick La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte-supported cell and the lowest area specific resistance (ASR).  相似文献   

17.
《Ceramics International》2023,49(4):5687-5699
As a potential cathode material for solid oxide fuel cells, the commercial application of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) has to face the challenges in insufficient oxygen reduction reaction (ORR) activity, segregation of Sr element, and CO2 poisoning. Therefore, the effect of A-site non-stoichiometry on the electrochemical performance of (LS)1-xCFs (x = ?0.05, 0, 0.05, 0.10, 0.15) from the aspect of microstructure/elemental surface chemical environment evolution is investigated in this paper. The results show that (LS)0.90CF has the best ORR activity and the highest electrochemical performance. The excellent electrochemical performance is attributed to the (LS)0.90CF/Co2FeO4/CoFe2O4-type heterostructure, formed by in-situ segregation induced by A-site defects, which improves the surface oxygen diffusion coefficient and chemical bulk diffusion coefficient of the cathode. At the same time, the A-site defect can effectively inhibit the segregation of Sr element in (LS)0.90CF, thereby improving the tolerance of CO2. At 800 °C, the area-specific resistance (ASR) of (LS)0.90CF (0.023 Ω cm2) is 66.7% lower than that of LSCF (0.069 Ω cm2), and the peak power density (1.57 Wcm?2) is 1.8 times higher than that of LSCF (0.87 Wcm?2). Therefore, perovskite A-site defect-induced B-site segregation to form heterostructures provides an effective strategy for the preparation of high-performance cathode materials.  相似文献   

18.
《Ceramics International》2017,43(4):3660-3663
A perovskite-type BaCe0.5Fe0.3Bi0.2O3-δ (BCFB) was employed as a novel cathode material for proton-conducting solid oxide fuel cells (SOFCs). The single cells with the structure of NiO-BaZr0.1Ce0.7Y0.2O3-δ (BZCY7) anode substrate|NiO-BZCY7 anode functional layer|BZCY7 electrolyte membrane|BCFB cathode layer were fabricated by a dry-pressing method and investigated from 550 to 700 °C with humidified hydrogen (~3% H2O) as the fuel and the static air as the oxidant. The low interfacial polarization resistance of 0.098 Ω cm2 and the maximum power density of 736 mW cm−2 are achieved at 700 °C. The excellent electrochemical performance indicates that BCFB may be a promising cathode material for proton-conducting SOFCs.  相似文献   

19.
《Ceramics International》2023,49(18):30187-30195
In this study, we report a novel medium-entropy perovskite oxide of La0.7Sr0.3Co0.25Fe0.25Ni0.25Mn0.25O3-δ (LSCFNM73) with high constitutive entropy (Sconfig) as the cathode material of intermediate temperature solid oxide fuel cells (IT-SOFCs). The intrinsic properties of phase structure, electrical conductivity, thermal expansion and oxygen adsorption capacity of La1-xSrxCo0.25Fe0.25Ni0.25Mn0.25O3-δ (LSCFNM, x = 0, 0.1, 0.2, 0.3) oxides are evaluated in detail. The LSCFNM73 oxide exhibits the maximum electrical conductivity of 464 S cm−1 at 800 °C and a relatively lower thermal expansion coefficient (TEC) of 15.34 × 10−6 K−1, which is selected as the propriate cathode composition. The B-site of LSCFNM73 contains four elements which can increase the configuration entropy. Additionally, NiO-Yttria stabilized zirconia (YSZ) supported fuel cell is fabricated by tape casting, hot pressing-lamination, co-sintering and screen printing technologies. The fuel cell demonstrates a maximum power density of 1088 mW cm2 at 800 °C, and excellent stability at 750 °C under 0.75V in 120 h and 10 times thermal cycling between 750 °C and 400 °C. Therefore, the medium-entropy LSCFNM73 oxide can be applied in IT-SOFCs as a competitive cathode material.  相似文献   

20.
Solid oxide fuel cells (SOFCs) have been gaining increased attention in the energy sector. Commonly, yttria-stabilized zirconia is widely employed as commercial electrolyte, however, resulted in drawbacks such as high-temperature operating and low conductivity which negatively affect the durability and efficiency. Thus there are many efforts to find high-ionic conductors. From the point of manufacturing, the major difficulty of LaGaO3-based electrolyte as a high-ionic conductor is its incompatibility with commercial Ni-based anodes during high-temperature processes as well as operating. Several interlayers have been introduced to prevent the reaction between LaGaO3-based electrolyte and Ni-based anode. In this study, we investigate the optimal thickness of the La-doped CeO2 (LDC) interlayer by the screen-printing method using La0.9Sr0.1Ga0.8Mg0.2O3-δ for the commercial electrolyte supported SOFCs. As a result, the superior power performance of 2.2 W·cm?2 at 1123 K is achieved through the optimized LDC thickness of 20 μm through not lab-scaled but commercial ceramic manufacturing processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号