首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
A filter media satisfying the hydraulic conductivity requirements allows unimpeded seepage without generation of surplus pressure head and decrease of flow rate. This paper proposes design criteria for the hydraulic conductivity requirements of a filter based on governing flow equations. The results have shown that the hydraulic conductivity requirements of pressure head and flow rate are satisfied with a single condition of hydraulic conductivity of filter greater than or equal to the hydraulic conductivity of soil times the hydraulic gradient in soil. The proposed model is developed for saturated conditions and is also applicable for partially saturated conditions. The developed model is validated based on the experimental evaluations of sandy soil with three granular filters and two needle punched non-woven geotextile filters. The developed design criterion applies to internally stable soils with granular and geotextiles filters and offers an improvement in the standards and current design guidelines for protective filters.  相似文献   

2.
Geotextiles are often subject to different load types in their filtration applications. The load action can cause changes in soil density, geotextile stretching and flow interaction at the soil-geotextile interface. All of these load-induced changes to a geotextile may affect the filtration behaviour of the soil-geotextile system. The impact of load type on the filtration behaviour of soil-nonwoven geotextile combinations has been studied through a series of tests using an experimental apparatus designed specially for the laboratory tests. In these tests, the soil-geotextile combination was fabricated by inserting a piece of nonwoven geotextile between a 50 mm thick soil layer and a layer of steel beads. Two chemical-bonded nonwoven geotextiles were employed in this study. One of the three load types, namely sustained, pulsatory and a combination of both was applied to the combination prior to each filtration test. The frequency of the pulsatory load was 0.1 Hz and a total of 5000 cycles of repeated load applied to the combination for each load type test. After applying this specific type of load on a soil-geotextile combination, water was allowed to flow down through the combination from the soil into a drainage layer set at various hydraulic gradients. The flow rates corresponding to elapsed times were measured and the average hydraulic conductivity value was extracted by using Darcy’s law to characterize the filtration performance of the entire soil-geotextile combination. Variations in the average hydraulic conductivity value with respect to the soil void ratio, magnitude and type of normal load were examined.The experimental results revealed that the void ratio of soil decreased with the increase of total load. Although two parent geotextiles under study, namely GT1 and GT2, have similar filtration characteristics, soil-geotextile combinations composed of these two geotextiles exhibited different filtration responses to the normal load. Soil-GT1 combinations exhibited a normal relationship between the average hydraulic conductivity and the normal load applied; the average hydraulic conductivity increased with an increase in the total load. Soil-GT2 combinations exhibited different load-dependent responses to a normal load with the average hydraulic conductivity depending on the magnitude and type of load. Such load-dependent hydraulic conductivity changes are attributed mainly to the geotextile in-plane strain and the pumping action in the combination.  相似文献   

3.
In many applications, geotextiles are subjected to dynamic loading conditions, for example, below roads and railways, for which a Gradient Ratio (GR) test is often used to assess filtration compatibility of soil-geotextile systems. This paper presents results from GR filtration tests with internally-stable and -unstable soils under dynamic loading conditions. In the tests, four non-woven geotextiles were used with varying types of soils under a hydraulic gradient of 5. Test results were interpreted in terms of GR values, permeability values, and mass and gradation characteristics of the soil before/after testing as well as the particles passing through the geotextiles. The test results show that the dynamic loading resulted in an increase of soil migration within the soil as well as an increase in the quantity of soil passing through the geotextiles. The available criteria for evaluating the internal stability of soils are evaluated based on the experimental data. Based on the test results, improvements to filter retention design criteria are suggested which take into account the internal stability of soils under dynamic loading.  相似文献   

4.
Composite geotextiles with polyester yarn reinforcement have been commonly used in combination with unsaturated soils. Both unsaturated and saturated shear strength of the interfaces were investigated between a composite geotextile and three major types of materials: silty sand (SM), low-plasticity silt (ML) and high-plasticity clay (CH) in a direct shear box. The interfaces were formed using two methods (A and B) to reflect the wide range of possible contact conditions in practice. Method A involved statically compacting the soil directly on top of the composite geotextile, while for Method B, the soil was statically compacted in a separate mold and later brought into contact with the composite geotextile. Type B interfaces required a larger displacement to mobilize the shear strength than Type A interfaces. The ultimate failure envelopes of SM and ML soils were similar to those of their interface shearing. Notably, the failure envelopes for the clay-geotextile interface of both types were higher than that of clay alone. The unsaturated soil-only shearing had a higher peak strength and tended to dilate more than saturated soil-only shearing, while unsaturated soil-interface shearing appeared to be more contractant than saturated interface shearing. The strength variations with suction for all tested soils and interface shearing were clearly non-linear. A new model that takes account of the condition of soil-geotextile contact intimacy is proposed for predicting the variation of interface strength with suction, based on the variation of the soil's apparent cohesion with suction and the geotextile-water retention curve.  相似文献   

5.
6.
The chemical and mineralogical compositions of three tropical soils, before and after permeation with 19–24 pore volumes of acid mine drainage (AMD), were assessed using X-ray diffraction and chemical analyses, in order to consider their potential value as clay liners. After permeation the CEC of one soil (Soil K) was reduced, partly due to structural modification of smectite by AMD. Conversely, the other soils (Soils A and H) showed increased CEC values due to structural changes in mixed layer vermiculite minerals, resulting in the formation of vermiculite as a separate phase in the soils. The specific surfaces of the soils were reduced. AMD caused changes in the variable charge properties of the soils due to the composite effects of soil pH and organic matter reduction and the changes in composition of exchangeable ions. Dolomite, gibbsite, diaspore, magnesioferrite and hydroxy apatite were dissolved from the soils. Chlorite was mildly altered but kaolinite was structurally resistant to AMD attack. Jarosites were, however, formed in all the soils. It was concluded that the tropical soils studied could be effective sinks for zinc and nickel from AMD, but that Soils A and H would be the most desirable clay liners for acid mine waste containment due to their low hydraulic conductivity, high sorptive capacity and compatibility with AMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号